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ABSTRACT

An Investigation of the In�uence of Initial Conditions on Rayleigh-Taylor Mixing.

(December 2004)

Nicholas J. Mueschke, B.S., University of Louisiana at Lafayette

Chair of Advisory Committee: Dr. Malcolm J. Andrews

Experiments and direct numerical simulations (DNS) have been performed to

examine the e¤ects of initial conditions on the dynamics of a Rayleigh-Taylor unsta-

ble mixing layer. Experiments were performed on a water channel facility to measure

the interfacial and velocity perturbations initially present at the two-�uid interface

in a small Atwood number mixing layer. The experimental measurements have been

parameterized for use in numerical simulations of the experiment. Two- and three-

dimensional DNS of the experiment have been performed using the parameterized

initial conditions. It is shown that simulations implemented with initial velocity and

density perturbations, rather than density perturbations alone, are required to match

experimentally-measured statistics and spectra. Data acquired from both the exper-

iment and numerical simulations are used to examine the role of initial conditions on

the evolution of integral-scale, turbulence, and mixing statistics. Early-time turbu-

lence and mixing statistics are shown to be strongly-dependent upon the early-time

transition of the initial perturbation from a weakly-nonlinear to a strongly-nonlinear

�ow.
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1. INTRODUCTION

1.1 Overview

An experimental and numerical investigation examining the role of initial condi-

tions on buoyancy-driven turbulence has been conducted. In this study, buoyancy-

driven turbulence was generated by the Rayleigh-Taylor instability, which occurs in

an unstable strati�cation of a heavy �uid with density �1 above a lighter �uid with

density �2, in a gravitational �eld g (Rayleigh 1884; Taylor 1950). The Rayleigh-

Taylor instability occurs when the density and pressure gradients are oriented such

that r� �rp < 0. In the presence of small perturbations at the two-�uid interface,

each mode grows exponentially and independently according to linear theory (Chan-

drasekhar 1961) until nonlinear dynamics begin to dominate the growth of each mode

(Haan 1989). Thereafter, modes begin to interact nonlinearly, such that smaller modes

merge to create larger buoyant structures. Secondary Kelvin-Helmholtz instabilities

grow as localized areas of high shear develop between rising bubbles and falling spikes

(Sharp 1984). As the amplitude of a particular mode approaches half of its wave-

length, the growth rate of that mode saturates. Finally, as the mixing layer becomes

turbulent and grows in spatial extent, dimensional analysis shows that, the only rele-

vant lengthscale is gt2, under the appropriate conditions. In this self-similar regime,

the width of the mixing layer is modeled as (Anuchina et al. 1978; Youngs 1984)

h = �Ag t2 ; (1.1)

where A � (�1��2)=(�1+�2) is the Atwood number and � is dimensionless. However,

the determination of the exact conditions under which equation (1.1) holds is a current

This thesis follows the style of the Journal of Fluid Mechanics.
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Figure 1.1 Illustration of three stages of Rayleigh-Taylor driven mixing: exponential

growth of small perturbations (left), saturation of the initial perturbation

(middle), �turbulent�regime (right). The images are taken from a three-

-dimensional DNS with a resolution of 256� 128� 256.

area of research and will be discussed further in §1.2 and §1.3. As the instability

develops and nonlinear processes begin to dominate, a turbulent mixing layer develops

between the two �uids at su¢ ciently large Reynolds numbers. An illustration of the

three stages is shown in �gure 1.1.

Rayleigh-Taylor �ows represent one of the few canonical �uid �ows that encom-

pass the laminar, transitional, and turbulent regimes. The development of a com-

plete understanding of Rayleigh-Taylor instability-generated turbulence is important

because of the broad impact such �ows have in nature and in technological applica-

tions. In astrophysical �ows, it is hypothesized that the limiting factor in the creation

of heavy elements in collapsing stars is the growth of the mixing layer formed by the

adverse strati�cation of densities in the gravitational �eld of a star (Smarr et al. 1981).

Many deep-sea ocean currents and atmospheric �ows contain Rayleigh-Taylor gener-

ated mixing and turbulence (Molchanov 2003; Cui & Street 2004). Rayleigh-Taylor
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instabilities have been found to occur in geophysical applications, such as the inter-

action between the Earth�s crust and mantle layers (Zandt et al. 2004). The break

up of fuel droplets in a high-speed �ows have also been found to be Rayleigh-Taylor

unstable (Thomas 2003; Marmottant & Villermaux 2004). At much smaller scales,

the performance of inertially-con�ned fusion targets are susceptible to buoyancy- and

shock-driven instabilities, in which a core of deuterium and tritium fuel is compressed

by high-density shells. The acceleration phase of an inertial con�nement fusion (ICF)

capsule compression has been shown to be Richtmyer-Meshkov unstable, while the

late-time deceleration phase is Rayleigh-Taylor unstable; the Richtmyer-Meshkov in-

stability is the impulsively-driven variant of the Rayleigh-Taylor instability. The

growth of a Rayleigh-Taylor driven mixing layer has been shown to be the limiting

factor in the e¤ective yield of (ICF) target capsules. (Lindl 1998; Betti et al. 2001;

Atzeni & Meyer-ter-Vehn 2004).

Modeling such complicated, multi-scale �ows, which contain a perpetually ex-

panding range of timescales and lengthscales, represents a grand challenge for the tur-

bulence community. Validation of predictive turbulent transport models of anisotropic,

inhomogeneous, variable-density turbulence and mixing require a priori knowledge

of velocity and density correlations, such as u0iu
0
j, �0u

0
i and u

0
iu
0
ju
0
k (where is the over-

bar denotes Reynolds averaging), to validate closure models. Currently, there are

no turbulence and mixing models that incorporate the e¤ects of initial conditions in

their predictions of the development of turbulent quantities during the growth of a

Rayleigh-Taylor driven mixing layer.

The principle objectives of the present investigation are to:

� Experimentally measure the initial density and velocity perturbations at the

two-�uid interface of a Rayleigh-Taylor mixing layer, including the �rst mea-
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surements of the spanwise perturbations;

� parameterize the measured initial density and velocity conditions so that they

may be implemented in numerical simulations of the experiment;

� perform two- and three-dimensional direct numerical simulations (DNS) of the

experiment using an accurate, high-resolution numerical scheme in which all

viscous and mass di¤usion scales are resolved;

� examine turbulence and mixing statistics from both numerical and experimental

results to examine the role of initial conditions in the early-time transition of

the mixing layer from a weakly-nonlinear to a strongly-nonlinear �ow.

Many experiments and numerical simulations have been performed to determine

which factors in�uence the growth and internal structure of a Rayleigh-Taylor mixing

layer, and are reviewed in the following sections. However, the lack of control over

the initial seeding of the perturbations and the inability to fully quantify the initial

conditions in all directions is common to nearly all experimental designs. Similarly,

numerical simulations are either initialized with ad hoc initial perturbations or uti-

lize some form of partially-measured (typically one-dimensional) initial conditions.

An overview of the major contributions to the study of Rayleigh-Taylor generated

turbulence and mixing will be presented here.

1.2 Previous Experiments

The �rst single-mode Rayleigh-Taylor instability experiments were performed

by Taylor (1950) using a vertical tube containing �uids having di¤erent densities.

Emmons et al. (1960) accelerated a tank on rails to generate an unstable interface

between methanol and air. Read (1984) performed the �rst signi�cant measurements
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of the growth of a Rayleigh-Taylor mixing layer seeded with a multi-mode pertur-

bation using a drop tank accelerated downward by rocket motors. This experiment

allowed for high accelerations and a large range of Atwood numbers, but had no

measurement of the initial conditions or of the internal structure of the mixing layer.

In a similar experiment, Dimonte and Schneider (1996) used the linear electric mo-

tor (LEM) facility at the Lawrence Livermore National Laboratory to accelerate a

tank, producing an unstable interface between two liquids. While more experimental

control and diagnostics were available for the LEM experiments, only a qualitative

description and estimate of the initial perturbations was possible.

Other experiments include the overturning of a tank containing two �uids of

di¤erent densities (Andrews 1986; Andrews & Spalding 1990). The experiments per-

formed by Andrews included the adverse strati�cations of �uids with a nominally �at

interface and with tilted interfaces. For the simulations conducted to model the ex-

periment, the initial tilt angle of the two-�uid interface could be accurately measured

by optical techniques, but the initial �ne-scale perturbations could not be measured.

Linden and Redondo (1991), Linden et al. (1994), and Dalziel et al. (1999) produced

an unstable interface by withdrawing a plate from a tank that contained a heavier

�uid above a lighter �uid. These experiments allowed for a partial quanti�cation of

the initial conditions. Dalziel et al. (1999) used a particle tracking method to mea-

sure the velocity perturbation introduced by the withdrawal of the splitter plate in

a two-dimensional plane. Numerical simulations performed by Dalziel et al. will be

reviewed in the following section.

Snider and Andrews (1994) developed a water channel device similar to many

shear layer experiments. Two �uid streams were initially separated by a thin splitter

plate where both stream velocities are matched, unlike in the shear layer arrange-

ment. The same water channel was used in this current investigation and is discussed
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in detail in §2.1 and shown in �gure 2.1. Snider and Andrews used optical techniques

to measure the self-similar quadratic growth of the mixing layer in time, with a mea-

sured value of � = 0:07 � 0:011. Snider and Andrews also used optical techniques

to measure the average volume fraction pro�le across the width of the mixing layer.

Wilson (2002) and Wilson and Andrews (2002) also used the same water channel to

investigate the internal structure of �uctuating quantities and the degree of molecu-

lar mixing within a Rayleigh-Taylor mixing layer. Wilson and Andrews (2002) used

thermocouples to measure the average volume fraction and the degree of molecular

mixing across the mixing layer at the early- and late-time stages within the mixing

layer development. The use of thermocouples also allowed for the measurement of

the density energy spectra. Wilson and Andrews reported a k�5=3 power-law in the

intermediate-wavenumber range and a k�3 power-law in the high-wavenumber range

at later times. Wilson (2002) used particle image velocimetry (PIV) to measure the

turbulent velocity correlations u02, w02 and u0w0 for both buoyancy-driven and com-

bined buoyancy/shear-driven mixing layers, where u and w are the streamwise and

vertical velocity component, respectively, and u0 and w0 are the �uctuating compo-

nents of u and w

u0 = u� u ; w0 = w � w: (1.2)

Due to extended data collection times, statistical convergence of the velocity and den-

sity spectra, as well as of double and triple correlations, was achieved. Ramaprabhu

(2003) and Ramaprabhu and Andrews (2004a) used the same water channel con�gu-

ration to measure both large-scale and small-scale statistics, such as the components

of the Reynolds stress anisotropy tensor (Pope 2000)

bij �
u0iu

0
j

u02k
� �ij
3
; (1.3)
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where

�ij =

8><>: 1 if i = j

0 if i 6= j
(1.4)

is the Kronecker tensor. Ramaprabhu and Andrews (2003) used PIV-S (scalar) to si-

multaneously measure a two-dimensional velocity �eld and the density �eld, resulting

in measurements of �0u0 and �0w0. Of particular interest are the Ramaprabhu and An-

drews (2004a; 2004b) measurements of the initial density and velocity �uctuations at

the two-�uid interface of a Rayleigh-Taylor mixing layer. The numerical simulations

that implemented the one-dimensional (in wavenumber space) measurements will be

reviewed in the following section.

1.3 Previous Simulations

Youngs (1984) performed monotone-integrated large eddy simulations (MILES)

(Boris et al. 1992; Pope 2000) of two-dimensional, incompressible, miscible Rayleigh-

Taylor instability-generated turbulence using the Eulerian hydrodynamics code TUR-

MOIL. The MILES method represents a class of numerical methods that solves the

Euler equations, but incorporates an e¤ective viscosity term through numerical trun-

cation errors. Small-scale �uctuations are damped by numerical di¤usion, which is

dependent upon the numerical grid resolution. Youngs�early simulations were aimed

at determining the growth of single- and multi-mode perturbations. He showed that

simulations implemented with only high-wavenumber velocity perturbations did not

grow as fast in the later stages of development as simulations that also included a

low-wavenumber interfacial perturbation. Youngs (1991) subsequently performed a

three-dimensional (1283 grid points) simulation with isotropic, multi-mode interfacial

perturbations. Youngs continued the theme of examining the late-time growth rate

of the mixing layer with respect to the determination of an asymptotic value of �
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in equation (1.1). Youngs also addressed the issue of the structure and evolution of

internal �uctuating quantities, in particular, density �uctuations and molecular mix-

ing. Youngs (1994) presented similar �ndings with a higher resolution (1602 � 270)

simulation.

Using the same numerical method as Youngs (1991; 1994), Linden et al. (1994)

and Dalziel et al. (1999) performed a three-dimensional simulation (160� 80� 200)

of the plate-withdrawal experiment described previously. Linden et al. (1994) used

short-wavelength, isotropic interfacial perturbations with the addition of a single,

long-wavelength interfacial perturbation in the x-direction to simulate the plate-

withdrawal. Dalziel et al. also showed that an irrotational (potential �ow) model

of the initial velocity disturbance generated better agreement between experiments

and simulations than the use of interfacial perturbations alone. Also, both simula-

tions (Linden et al. 1994; Dalziel et al. 1999) implemented pseudo-anisotropic initial

conditions to simulate the experiment, where either a single-wavelength interfacial

perturbation or a two-dimensional velocity �eld was superimposed onto a �ow with

isotropic perturbations. However, several factors prevented a direct comparison be-

tween experiment and the simulation. The experiments were performed with Atwood

numbers A = 1� 10�4 to 5� 10�2 (Linden et al. 1994) and A = 2:0� 10�3 (Dalziel

et al. 1999), while the simulations implemented A = 9:1 � 10�2 for numerical sta-

bility reasons. Also, the numerical simulations had an e¤ective numerical Schmidt

number, Sc � �=D � 1, while the experiments had Sc � 1000, where � is the kine-

matic viscosity and D is the di¤usivity of mass between the two �uids. Finally, the

three-dimensional numerical simulations did not include any measured perturbations

in the spanwise direction. With this method of initialization it is not clear how the

initial seeding in the second homogeneous direction a¤ects the early-time structure

and transition of the mixing layer to a strongly-nonlinear �ow and a self-similar state
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at later times.

More recently, Cook & Dimotakis (2001; 2002) performed 2562 � 1024 DNS of

Rayleigh-Taylor mixing with A = 0:5 and Sc = 1 to examine how initial conditions

a¤ect the asymptotic growth of the mixing layer and the evolution of the degree

of molecular mixing within the layer. In contrast to the MILES technique, DNS

solves the full Navier-Stokes equations, resolving all length- and timescales. DNS is

severely limited by the number of computational gridpoints and computing resources

available for a given simulation. The Cook and Dimotakis simulations implemented

isotropic, broad-banded interfacial perturbations within an annulus of wavenumbers,

assuming a Gaussian distribution about a particular mode number of interest. The

same numerical scheme was used with an increased resolution of 5122 � 2040 to

examine the transfer of energy between scales of motion (Cook & Zhou 2002; Cabot

et al. 2004). Under the assumption that the memory of the initial conditions can be

neglected in the late-time, self-similar growth regime, Cook et al. (2004) used a very

high-resolution large-eddy simulation (11523) to further investigate the asymptotic

growth of a mixing layer and the late-time mixing transition (Dimotakis 2000).

Large-eddy simulation (LES) techniques solve a �ltered form of the Navier-Stokes

equations where only the large and intermediate scales of motion are resolved. The

e¤ects of the unresolved scales are modeled by a second-order residual subgrid-scale

Reynolds stress tensor �Rij � UiUj � Ui Uj where the overline denotes �ltering in this

case (Smagorinsky 1963; Lilly 1967; Pope 2000). In wavenumber space, the modelling

of �Rij is accomplished by the calculation or modeling of triadic wave interactions

between resolved and �ltered �uctuations (Leslie & Quarini 1979; Pope 2000; Cabot

et al. 2004). This method has the advantage of greater computational e¢ ciency

and achieving a greater range of Reynolds numbers than suitable for DNS. The LES

performed by Cook et al. (2004) implemented isotropic, narrow-banded interfacial



10

perturbations with a Gaussian distribution about a particular mode.

Dimonte et al. (2004) also studied how the initial conditions a¤ect the asymptotic

growth rate of a Rayleigh-Taylor mixing layer. Dimonte et al. performed a study

employing a variety of numerical schemes using spatial resolutions of 1282 � 256 and

2562 � 512. The initial interfacial perturbations were initialized with an isotropic,

approximately uniform distribution of energy in either modes 16�32 or 32�64 so that

all of the simulations would evolve in the limit of strong mode-coupling. Dimonte et

al. demonstrated a lower-bound value of � � 0:03 when mode-coupling is the only

mechanism for the development of larger scales.

Ristorcelli and Clark (2004) performed an ensemble of simulations (1502�300) of

a Rayleigh-Taylor mixing layer using pseudo-spectral DNS techniques to investigate

the temporal evolution and self-similarity of many �uctuating quantities within the

mixing layer. As the late-time, self-similar behavior of the mixing layer was of interest,

an ad hoc initial Gaussian distribution of modes was used for the initial conditions of

the DNS. Multiple simulations were performed to examine the evolution and collapse

of turbulence and mixing statistics in the self-similar regime. Ristorcelli and Clark

showed that many statistical quantities measured across the mixing layer at late times

collapse onto a single curve when normalized by the mixing layer width.

Ramaprabhu and Andrews (2004b) used measured density and velocity �uctua-

tions to perform numerical simulations of the water channel experiment (Ramaprabhu

& Andrews 2004a). Ramaprabhu and Andrews (2004b) used a MILES code (Andrews

1986; Ramaprabhu 2003) to investigate how well numerical simulations initialized

with density and velocity perturbations agree with experimentally-measured mix-

ing layer growth rates and �uctuating quantities. Instead of implementing the one-

dimensional measurement in one direction within the simulation and assuming a per-

turbation in the other direction like Dalziel et al. (1999), they assumed isotropic initial
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Researcher Isotropy Initial Conditions

Youngs (1991) Isotropic Interfacial (ad hoc)

Youngs (1994) Isotropic Interfacial (ad hoc)

Linden et al. (1994) Pseudo-
anisotropic

Interfacial (ad hoc)

Dalziel et al. (1999) Pseudo-
anisotropic

Velocity (measured) and
Interfacial (ad hoc)

Cook & Dimotakis (2001) Isotropic Interfacial (ad hoc)

Cook & Zhou (2003); Cabot et al. (2004) Isotropic Interfacial (ad hoc)

Cook et al. (2004) Isotropic Interfacial (ad hoc)

Ristorcelli & Clark (2004) Isotropic Interfacial (ad hoc)

Ramaprabhu & Andrews (2004b) Isotropic Interfacial (measured)

Ramaprabhu & Andrews (2004b) Isotropic Velocity (measured)

Dimonte et al. (2004) Isotropic Interfacial (ad hoc)

Mueschke (2004) Anisotropic Velocity (measured) and
Interfacial (measured)

Table 1.1 Previous and current three-dimensional simulations and their respective ini-

tial conditions.

perturbations in all homogeneous directions. The three-dimensionality of the �ow was

seeded by rotating the one-dimensional density or velocity spectrum in wavenumber

space to create a two-dimensional perturbation. It was found that simulations with ve-

locity perturbations matched closer with experimental measurements of growth rates

and �uctuating quantities than simulations using interfacial perturbations alone.

A summary of previous simulations is shown in table 1.1. The objectives of the

present work di¤er from the majority of the previous research involving Rayleigh-
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Taylor �ows; this research extends some of the previous investigations by including a

proper method for measuring and implementing initial conditions of a Rayleigh-Taylor

�ow. The work presented in this thesis extends the work performed by previous re-

searchers in the following ways: it is the �rst to implement fully measured, anisotropic

initial velocity and interfacial perturbations in a numerical simulation. Also, this in-

vestigation is the �rst use of DNS to simulate the turbulent mixing layer formed in

the water channel experiment.
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2. EXPERIMENTAL SETUP AND DIAGNOSTICS

2.1 Experimental Facility

The experimental objectives of this research have been accomplished using an

existing water channel facility at Texas A&M University (Snider & Andrews 1994;

Wilson & Andrews 2002; Ramaprabhu & Andrews 2004a). The water channel is

an open-loop device in which cold and warm water (�T � 5� C) enter the channel

initially separated by a thin Plexiglas splitter plate. A schematic of the water channel

is shown in �gure 2.1. The density di¤erence between the two streams is induced by

the thermal expansion of the warmer �uid. The water channel is supplied by two

500-gallon water tanks and has a running time of approximately 10 minutes. Sump

pumps in each tank ensure adequate stirring of the water to maintain temperature

uniformity. Cold and hot water supplies are pumped into the entrance plenum of the

water channel where each stream �ows through an arrangement of �ow-straighteners,

followed by a series of screen meshes (30�30 wires/in). A description of enhancements

made to the screen meshes is given in Appendix C. The screen meshes are intended to

eliminate free-stream velocity �uctuations and reduce the momentum de�cit caused

by boundary layers along the walls of the channel and splitter plate. The splitter

plate terminates in a 2:5� knife-edge followed immediately by another screen mesh

(35 � 35 wires/in). The �nal screen mesh (�end-screen�) is intended to minimize

the momentum de�cit at the trailing edge of the splitter plate, thereby reducing the

magnitude and wavelength of shedding vortices.

Upon entering the mixing section of the channel, an adverse density strati�cation

occurs between the two water streams, inducing Rayleigh-Taylor mixing downstream.

The mixing section of the water channel is 100 cm long (x-direction) with cross-

sectional dimensions of 20 cm � 32 cm (width � height). In the present experiments,
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Figure 2.1 Schematic of the water channel experiment. The conventions for the coor-

dinates and velocities used in the present work are shown on the right-hand

side.

the mean advective velocity Um of the two stream velocities are matched (Um � 4:2

cm/s) so that no shear due to mean velocity gradients exists. The sidewalls have

been shown by previous researchers to have negligible in�uence on the growth rate of

the mixing layer (Snider & Andrews 1994). The water channel measurements have

also been shown to be statistically-stationary for higher-order moments of velocity

�uctuations and density �uctuations (Wilson 2002; Ramaprabhu 2003). Figure 2.1

shows a schematic of the water channel and its diagnostic capabilities.

To illustrate the spatial and temporal development of the mixing layer within the

water channel, an image of the mixing layer is shown in �gure 2.2. Nigrosene dye was

added to the top stream for visualization purposes. Small perturbations, which are
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Figure 2.2 Photograph of water channel experiment. The mean �ow is from left�

to-right and the top �uid is seeded with a Nigrosene dye.

sub-pixel in size in the image shown, grow and interact to form the mixing layer that

is seen on the right-hand side of the image. Downstream distance is converted to time

by Taylor�s hypothesis, such that t = x=Um, where x is the downstream position of

the thermocouple probe from the trailing edge of the splitter plate (Taylor 1938; Pope

2000). Time is normalized as in Dalziel et al. (1999) and Ramaprabhu & Andrews

(2004a):

� � t

r
Ag

H
(2.1)

=
x

Um

r
Ag

H
;

where H = 32 cm is the height of the mixing layer channel. A summary of the

experimental parameters is given in table 2.1.

One goal of the present investigation is to measure the initial velocity and in-

terfacial perturbations of the mixing layer so that their in�uence on the development

of the mixing layer can be determined. To accomplish this, three separate and inde-

pendent measurements were performed to quantify the initial conditions of the �ow.

First, the �uctuating density �eld o¤ the trailing-edge of the splitter plate was mea-

sured using a high-resolution thermocouple. Velocity perturbations in the streamwise
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Parameter Value Description

�1 0:9986 g/cm3 Approximate density of top stream

�2 0:9970 g/cm3 Approximate density of bottom stream

A 7:5� 10�4 Atwood number

g �981 cm/s2 Gravity

Um 4:2 cm/s Mean advective velocity

�1 0:009 g/cm s Dynamic viscosity of top stream

�2 0:011 g/cm s Dynamic viscosity of bottom stream

Pr 7:0
Prandtl number Pr � �=�;
� = (�1 + �2) = (�1 + �2) ;
� is the thermal di¤usivity

Table 2.1 Summary of physical and experimental parameters.

direction were measured using particle image velocimetry (PIV). Finally, the interfa-

cial perturbations in the spanwise direction were measured using planar laser-induced

�uorescence (PLIF). Further details of each experimental method are given below.

2.2 Thermocouple Diagnostics

The measurement of the interfacial perturbation in the streamwise (x) direction has

been accomplished using a new high-resolution, E-type thermocouple measurement

system. Temperature �uctuations were measured using thermocouples positioned at

x = 0:1 and x = 1:0 cm downstream from the splitter plate. The new thermocouples

are constructed of 40 gauge wire (0:08mmdiameter) with a weld bead diameter of 0:16

mm. They have a smaller weld bead diameter than the thermocouples previously used

in water channel experiments, resulting in a less intrusive diagnostic and improved
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spatial resolution. The spatial resolution enhancements reduce the uncertainty in the

mixing statistics and scalar �uctuation spectra. Additional details on the spatial-

averaging of temperature measurements due to probe volume size can be found in

Appendix A. The thermocouple wire, extension wire, and all connections have been

shielded and grounded to minimize extraneous EMI and RFI noise. Temperature

measurements were recorded at a rate of 50 kHz using a 16-bit data acquisition (DAQ)

system. Spurious noise from the temperature trace was eliminated using a 100-point

averaging window, reducing the sampling rate to an e¤ective 500 Hz. Using Taylor�s

hypothesis, at this sampling rate and a mean advective velocity of Um � 4:2 cm/s, the

temperature measurements are separated by 0:084 mm, which is approximately half

the diameter of the probe volume. Fluctuations in the temperature measurements

at the Nyquist frequency (250 Hz) were found to be below the level of system noise,

obviating the need for a more complicated �ltering algorithm that retains spectral

resolution.

In addition to accurately measuring temperature data at several downstream

positions, another measurement was made to accurately determine the time of de-

velopment of the mixing layer � . To ensure an accurate measurement of � , three

measurements were taken. First, the distance between the splitter plate and probe

volume was carefully measured. Second, the Atwood number was measured accu-

rately. Finally, the mean �ow velocity of the water channel was measured accurately,

which is an important detail with respect to conducting thermocouple experiments.

The following procedure was devised so that an accurate mean velocity measurement

could be made. First, the mean advective velocity for both streams was adjusted

until no shear was present and Um � 4:1�4:5 cm/s. The presence of a mean velocity

gradient between the two streams was determined by injecting dye on the splitter

plate just before the end-screen. Once the dye was entrained into the mixing layer,
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it was possible to examine the �lean�of the developing Rayleigh-Taylor structures at

downstream locations. In the absence of any leaning, the di¤erence between the top

and bottom stream velocities was shown to be jU1 � U2j < 0:2 cm/s (Ramaprabhu

2003). To measure the mean advective velocity, Nigrosene dye was injected into the

cold water stream at approximately 25 cm before the end of the splitter plate. Images

of the mixing section of the water channel (4:25 cm � 3:19 cm; 640�480 pixels) were

recorded at 30 Hz using LabVIEW 1 and a Kodak Megaplus2 digital imaging system.

The mean advective velocity Um was calculated by dividing the width of the imaging

frame Lx by the time required for the fragment of dye to completely traverse the

imaging plane, where

Um =
30Lx
Nframes

(2.2)

and Nframes is the number of frames required for the dye tracer to traverse Lx. The

factor of 30 in equation (2.2) arises from the sampling rate of the camera. Care was

taken to inject the dye at the same focal distance as Lx was measured.

Temperature measurements were converted to density values using an equation

of state for water (Kukulka 1981):

�(T ) =
P (T )

Q(T )
; (2.3)

where P (T ) and Q(T ) are polynomials de�ned as:

P (T ) = 999:8396 + 12:2249T � 0:007922T 2 � 55:448� 10�6 T 3 (2.4)

+149:756� 10�9 T 4 � 393:295� 10�12 T 5 ;

Q(T ) = 1 + 18:159� 10�3 T ; (2.5)

1LabVIEW is a trademark of National Instruments Corporation.
2MegaPlus is a trademark of Eastman Kodak Company.
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in units of kg/m3.

The thermocouple was mounted on a vertical rake that allowed for �ne adjust-

ment of the probe location in the vertical (z) direction. All measurements in this

study have been conducted on the �centerplane�of the mixing layer, which is de�ned

as the plane in which equal portions of �uid 1 and �uid 2 exist. Mathematically, the

centerplane is de�ned by the location in which the average volume fraction of the

ith �uid is fi = 1=2 for the two-�uid case. The average volume fraction of �uid 1 is

de�ned by the time average

f1 =
1

�

Z �

0

�(t)� �2
�1 � �2

dt (2.6)

and f1 + f2 = 1.

To determine the location of the centerplane, a series of temperature measure-

ments were recorded at 200 Hz and the time-averaged volume fraction for �uid 1,

f1, was evaluated. Depending upon the value of f1, the position of the probe was

adjusted vertically until f1 = 0:50�0:025. Once the probe was located on the center-

plane, a two-minute interval of temperature measurements was recorded at 50 kHz.

This allows for the passage of an adequate number of large-scale (long-wavelength)

perturbations and enforces statistical convergence criteria. Further details on the

statistical convergence of temperature measurements can be found in Wilson and

Andrews (2002). A detailed description of experimental enhancements with respect

to this procedure can be found in Appendix B.

In addition to the measurements at x = 0:1 cm and x = 1:0 cm, density mea-

surements were taken at several downstream locations to investigate the evolution

of various density statistics. All measurements were taken on the centerplane of the

mixing layer, satisfying the criteria that fi = 1=2. However, the average volume

fraction provides no information regarding the distribution of density values at a par-
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ticular downstream location. This information is provided in the probability density

function of the volume fraction trace P (f1) ; de�ned in its discrete form by

P (f1) =
F (f1)

Nsamp �bin
; (2.7)

where F (f1) is the frequency distribution of f1, Nsamp is the number of samples, and

�bin is the bin width of F (f1).

The range and distribution of scales present in the �uctuating component of the

density �eld are also of interest. This information is determined by calculating the

power spectrum of the density trace. First, the one-dimensional Fourier transform of

the �uctuating density trace is calculated by

b�(k) = F
�
�(x)0

�
(2.8)

=

Z L

0

�(x)0 e� i k x dx ;

where F denotes the Fourier transform, k � 2�=� is the wavenumber, and �(x)0 =

�(x)�h�i de�nes the �uctuating density trace. The mean density value h�i is de�ned

by the spatial-averaging operator

h�i = 1

L

Z L

0

�(x) dx ; (2.9)

where � is any scalar variable, L � UmNsamp=fsamp is the distance over which �(x)

was measured, Nsamp is the number of samples, and fsamp is the sampling rate in

Hz. Note that the density �eld within the experiment is a function of all spatial

dimensions and time �(x; y; z; t), but the density trace used in the spectral analysis

is only a function of the x coordinate. This is due to the fact that measurements

were taken at a �xed point in space, with time being the independent parameter.

The change of variables from temporal variation to spatial variation utilizes Taylor�s
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hypothesis to relate �(t) and �(x), allowing for spatial-averaging to be performed,

rather than temporal-averaging. Due to the fact that the probe volume records a

one-dimensional measurement, the dependence of the density �elds upon the other

spatial and temporal dimensions has been dropped. The discrete wavenumbers are

km =
2�m

L
; (2.10)

where m is the mode number. Equation (2.8) gives the amplitudes and phase in com-

plex space of the �uctuations for each wavenumber from which the one-dimensional

energy spectrum was calculated

E�(k) = b�(k) b� �(k) ; (2.11)

where b� �(k) is the complex conjugate of b�(k). To minimize errors associated with
discontinuities between the beginning and end of the density trace, a Hann window

was applied to the original trace of �(x)0 (Blackman & Tukey 1959).

Finally, the density data can be used to determine an integral measure of the

degree of molecular mixing � at a given downstream location. The measure used

here was �rst introduced by Dankwerts (1952) as the degree of �uid segregation. The

mathematical de�nition of � requires the de�nition of two quantities, B0 and B2. The

quantity

B0 =

�
�rms
��

�2
(2.12)

is the dimensionless variance of density �uctuations for miscible �uids at a given

downstream location, where the root mean square (rms) value of the �uctuating

density trace is

�rms =

s
lim
L!1

1

L

Z L

0

�
�(x)0

�2
dx : (2.13)
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The quantity

B2 = hf1ihf2i (2.14)

= hf1i(1� hf1i) :

is the dimensionless variance of density �uctuations for immiscible �uids at a given

downstream location. Note that f1 is mathematically equivalent to hf1i by Taylor�s

hypothesis, with the subtle distinction that � represents time-averaging and h�i rep-

resents spatial-averaging. Hereafter, spatial averaging will be performed assuming a

space-time transformation by Taylor�s hypothesis. Then the molecular mixing frac-

tion at a given downstream location is de�ned as

� = 1� B0
B2
: (2.15)

By de�nition � = 0 when the two �uids are completely segregated and � = 1 when

they are completely mixed. All quantities, B0, B2, and � are dependent upon the

distance downstream or � ; however, that dependence has been is not shown in the

above de�nitions for convenience.

2.3 PIV Diagnostics

Velocity perturbations in the streamwise direction were measured using particle

image velocimetry (PIV) (Adrian 1991). The PIV system consisted of two 120 mJ

ND-Yag lasers (532 nm), each with a �ring rate of 15 Hz and a pulse width of 5

ns. The lasers are triggered in an alternating fashion, resulting in an e¤ective 30 Hz

sampling rate. Each 500-gallon water tank is seeded with 7:5 ml of neutral-buoyancy

silver spheres having a mean particle diameter of 10 �m. A series of cylindrical lenses

created a sheet of laser light in the xz-plane of the water channel, as seen in �gure
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2.1 and 2.3. The laser sheet was positioned so that the u and w components of the

velocity �eld were measured in a plane just o¤ the splitter plate. The measurements

of u and w are then decomposed into their respective mean (u and w) and �uctuating

(u0 and w0) components, as shown in equation (1.2).

Images were captured using a Kodak MegaplusTM digital imaging system. The

image capturing system and laser triggering system were synchronized through the

use of a pulse generator (Kraft 2004). A series of 1200 images of domain size 3:80 cm

� 2:85 cm and a resolution of 640� 480 pixels were recorded using LabVIEW TM. In-

stantaneous velocity �elds were determined by calculating the two-dimensional cross-

correlation of two successive images using MATPIV (Grue et al. 2000; Sveen 2004).

Particle displacement vectors were calculated from the cross correlation of an inter-

rogation window within two successive images:

R(x; y) =

M=2; N=2X
i=�M=2; j=�N=2

Im1(i; j) Im2(i+ x; j + y) ; (2.16)

where Im1 and Im2 are the two-dimensional, 8-bit scalar intensity �elds recorded

by the image capturing system. The particle displacement vector is de�ned as the

distance between the center of the interrogation window and the peak of the cross-

correlation function in two-dimensional space. Displacement vectors outside two stan-

dard deviations from their neighbors were discarded and replaced with interpolated

values.

TheMATPIV post-processing algorithm employed a multi-pass technique, where

the initial pass operated on 64 � 64 pixel interrogation windows. The second pass

used the displacement vectors from the �rst pass as initial estimates for 32 � 32

pixel interrogation windows. In both the �rst and second pass, the interrogation

windows overlapped by 50%, resulting in a �nal �eld of 39� 29 velocity vectors. To
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Figure 2.3 Schematic of the domain measured by the PIV system in the water channel.

examine the �uctuations of the velocity �eld at a given point in space, the u and

w velocity components at a given (x; y) location were taken from each of the 1199

velocity �elds. Then, the velocity traces u(t) and w(t) were �ltered using a Savitzky-

Golay high-order polynomial �ltering algorithm (9th-order over 19 points) to remove

spurious velocity measurements (Ramaprabhu 2003). The uncertainty of the velocity

measurements was determined by Ramaprabhu (2003) to be 0:05 cm/s using methods

described by Adrian (1997). Also, criteria for the statistical convergence of �uctuating

velocity statistics were also presented by Ramaprabhu (2003) and, therefore, will not

be presented here.

To quantify the initial velocity perturbations at the two-�uid interface, PIV mea-

surements were performed in the wake immediately following the trailing edge of the

splitter plate and end-screen (0�2:5 cm). Velocity measurements were taken with no

temperature di¤erence between the two streams. The removal of buoyancy-generated

dynamics from the �ow served two purposes. First, an objective of this investigation

is to determine the momentum disturbance generated by the experimental apparatus,

which excludes velocity �uctuations due to buoyancy e¤ects. In the variable-density

case with A > 0, which constitutes the Rayleigh-Taylor unstable case, the momentum

of oscillating structures (up-swells and down-swells) are di¤erent due to the di¤er-

ence in densities; however, in the limit of A! 0, this di¤erence is negligible and the
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current procedure is valid.

Similar to the density measurements, the determination of the range and magni-

tude of �uctuating velocities are of primary interest in these measurements. Equations

(2.8) and (2.11) are used in a similar manner to calculate bw(k) and Ew(k). The en-
ergy spectrum of the vertical velocity component, Ew(k), at x = 0:5 was used to

parameterize the initial velocity perturbation of the �ow, which will be discussed in

§4.3. Also of interest was the vertical variation in the u velocity pro�le. This pro�le

will also be used in the parameterization of the initial velocity conditions in §4.3.

2.4 PLIF Diagnostics

Planar laser-induced �uorescence (PLIF) techniques were used to measure the

interfacial perturbation in the spanwise (y) direction. PLIF was used to detect the

presence of a particular scalar by injecting into (or seeding) a �uid stream with a

dye that �uoresces when excited by a given wavelength of light (Jacobs 1992; Lee et

al. 1992). To accomplish this, the current optical arrangement employed by the PIV

system was modi�ed so that the laser sheet was perpendicular to the mean channel

�ow. A schematic of the camera and laser sheet arrangement is shown in �gure 2.4.

Rhodamine 6G dye (2:5 g) was added to the 500-gallon tank containing the top (cold)

stream so that it would �uoresce in the presence of 532 nm laser light. The laser sheet

was placed a distance x = 0:5 cm from the trailing edge of the splitter plate so that

only the top stream was illuminated, thus allowing the determination of the two-�uid

interfacial perturbation. The digital imaging system used in the thermocouple and

PIV experiments was modi�ed to record images of 1000 � 480 pixels over a domain

size of approximately 10 cm � 5 cm. The imaging system was synchronized with the

laser system in the same manner as described in §2.3.
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Figure 2.4 Schematic of the experimental laser sheet con�guration for spanwise PLIF

measurements.

These spanwise measurements are novel in the following way. These are the

�rst experiments to employ o¤-axis imaging of the water channel, requiring new

experimental procedures to be developed for this experimental con�guration. More

importantly, these are the �rst measurements of the initial seeding in the spanwise

direction of a canonical Rayleigh-Taylor �ow. Combined with the measurements

described in §2.2 and §2.3, these measurements provide the most complete description

of the initial conditions of a Rayleigh-Taylor �ow to date.

Spanwise interfacial measurements were performed as follows. First, the laser

head and all associated optics were con�gured such that a vertical laser sheet was

formed in a plane x = 0:5 cm downstream from the splitter plate. The camera was

located approximately 50 cm from the midpoint of the trailing edge of the splitter

plate, and the focal axis was located on the same horizontal plane as the splitter

plate at an angle approximately 35� from the axis normal to the laser sheet. The
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laser sheet was focused so that its thickness was < 1 mm near the centerplane of the

channel. Using a syringe, a solution of Rhodamine 6G dye and water was injected

into the channel so that the camera could be focused. Once the camera was focused,

the water channel pumps were activated and a series of images were captured. For the

same reasons discussed in §2.3, the water channel was operated with no temperature

di¤erence between the two streams. Measurements were also performed with A =

5:0�10�4, with no di¤erence found between the measurements performed with A = 0.

Thus, the measured perturbations do re�ect the interfacial perturbation imposed by

the splitter plate and end-screen on the two-�uid interface in the spanwise direction.

Once images of the two �uid interface had been captured, the water channel was

drained and a calibration grid was placed in the same location as the laser sheet.

The calibration grid consisted of an array of horizontal and vertical lines located at

half-inch intervals, and was used to eliminate any parallax and perspective errors

introduced by locating the camera at an o¤-angle to the laser sheet. The calibration

grid was mounted between two sheets of clear Plexiglas 0:64 cm in thickness to ensure

that the grid remained �at during the course of the experiment. Once the calibration

grid was in place, an image of the grid was recorded with the same camera settings

and location as used to capture the PLIF images. Images of the calibration grid were

used to calibrate the dewarping procedure described below.

Special consideration has been given to the dewarping of the spanwise images.

Other researchers have used o¤-axis imaging and dewarping algorithms in applications

such as stereoscopic PIV (Arroyo & Greated 1991; Willert 1997) and other applica-

tions (Kent & Eaton 1982). However, in these experiments, the location of the water

channel and laser sheet determined the location of the camera and not the need to

resolve an out-of-plane velocity component. The procedure used in this investiga-

tion is the same robust, second-order dewarping procedure presented by Pratt (1991)
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and van Oord (1997). The functional relationship between the warped coordinates

(Xw; Yw) and dewarped coordinates (Xd; Yd) is given by

Xd (Xw; Yw) = a0 + a1Xw + a2Yw + a3XwYw + a4X
2
w + a5Y

2
w ; (2.17)

Yd (Xw; Yw) = b0 + b1Xw + b2Yw + b4XwYw + b4X
2
w + b5Y

2
w ;

where ai and bi, i = 1�5, are calibrated coe¢ cients. The unknown coe¢ cients were

determined from a least-squares �t relating 15 control points from the warped image

of the calibration grid to their true physical location. Figure 2.5 shows the raw warped

image of the calibration grid and a corrected image.

Once a PLIF image has been corrected for perspective errors, the two-�uid inter-

face can be extracted by analyzing the intensity values at each pixel location of the

PLIF image. A Canny-type edge �lter was used to determine the interface between

the �uorescing and non-�uorescing �uids (Canny 1986). The Canny method identi-

�es edges in the image at local maxima of the gradient of the intensity �eld, given a

threshold value to eliminate spurious boundaries. Results using this method will be

presented in §3.3.

An issue with the use of PLIF diagnostics in the water channel is that the dif-

fusivity of heat and the di¤usivity of the �uorescing dye marker are very di¤erent.

A temperature di¤erence between the two streams is used to create the density dif-

ference: thus, the two-�uid mixture that is created by this arrangement is miscible,

such that the Prandtl number is Pr � �=D � 7, where � is the kinematic viscosity

and D is the thermal di¤usivity for water. However, the dye dissolved in the top

stream di¤uses into the bottom stream at a much slower rate than the di¤usion of

heat. Thus, the question is raised whether or not the dye is an accurate marker

for the two-�uid interface. However, this error is minimized in this investigation by
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Figure 2.5 Raw image of warped calibration grid (above) and dewarped calibration

grid (below).
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taking measurements in the limit of � ! 0, such that the di¤erence between the

amounts of di¤usion is negligible. Aside from the di¤erence being negligible at very

early times, the location of the two-�uid interface is the only desired information from

the measurement, rather than data concerning the internal structure, also justifying

the current procedure.
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3. EXPERIMENTAL RESULTS

3.1 Density Measurements

Density measurements were taken at several downstream locations, x = 0:1, 1:0,

5:0, 10:0, 20:0, 30:0, and 40:0 cm. Of particular interest are the two measurements

closest to the splitter plate because of their potential to represent the initial interfacial

perturbation of the �ow. Figure 3.1 shows the evolution of the volume fraction prob-

ability density function (PDF) P (f1) for several downstream locations. All curves

shown in �gure 3.1 were measured at the centerline, showing that while hfii = 1=2,

much more information concerning the internal structure and degree of molecular

mixing is present in the trace of the density values than just the average volume

fraction. The early-time (� = 0:004 and � = 0:04) volume fraction distributions are

peaked at hfii = 1=2, indicating that the majority of the �uid at the centerline is

mixed. However, at intermediate times (0:19 < � < 0:39), the distribution becomes

bimodal. This trend is reversed at later times, as the distribution of hfii returns to a

single-mode distribution in the large Reynolds number regime.

Similar volume fraction distributions were reported by Ramaprabhu and An-

drews (2004a) using lower resolution thermocouples; however, the degree of kurtosis

or bimodality di¤ered from the distributions presented in this investigation. This

is attributed to the inability of the larger thermocouples used by Ramaprabhu and

Andrews to capture the sharp gradients present in the early stages of mixing. Further

information on the spatial-averaging due to thermocouple probe size can be found in

Appendix A.

As shown in �gure 3.1, the amount of mixed and unmixed �uid present at the

centerplane of the mixing layer varies signi�cantly with downstream position. Another

illustration of this is shown in the evolution of the molecular mixing fraction �, shown
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Figure 3.1 Time-evolution of early-time (top) and late-time (bottom) volume fraction

PDF, P (f1).
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in �gure 3.2. There are two stages of evolution which are noteworthy in �gures 3.1

and 3.2. At very early times, the value of � decreases rapidly, which represents the

transition from a perturbed two-�uid interface to the initial formation of a mixing

layer in the linear and weakly-nonlinear regimes. The second stage is noted by the

rise in value of �. Once the growth rates of the initial perturbations saturate and

strongly-nonlinear dynamics control the growth of the mixing layer, the interfacial

area between the two �uids increases with the onset of Kelvin-Helmholtz instabilities,

thereby enhancing the mixing process. This transition is observed in the water channel

experiments at � � 0:3, which is shown in the minimum value of �.

Figure 3.2 Time-evolution of the molecular mixing quantities, B0, B2 and �.
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Molecular mixing between two �uids in a Rayleigh-Taylor mixing layer is di¢ cult

to measure experimentally because of the requirement for su¢ cient data points to cal-

culate �rms and hf1i on a particular z-plane, with the constraint that the measurement

points are �nely spaced so that density gradients can be resolved. Such requirements

are more easily achieved in numerical simulations. Historically, researchers have typ-

ically reported values of �(z) across the mixing layer for various � , rather than the

evolution of �(z = 0; �), as shown here. Ramaprabhu and Andrews (2004a) measured

�(z = 0; �) in the same water channel experiment used in this investigation; however,

a discrepancy exists in the values of � measured between 0 < � < 1. Ramaprabhu

and Andrews reported a minimum value of � � 0:68 at � � 0:3, whereas a minimum

of � � 0:45 is reported here. The di¤erences between the measured values of � re-

ported here and by Ramaprabhu and Andrews are attributed to the di¤erence in the

size of the thermocouple probes used and the noise elimination techniques employed

(see Appendices A and B). Ristorcelli and Clark (2004) used DNS with Sc = 1 and

isotropic interfacial perturbations to measure the evolution of � at the centerplane

of the mixing layer. Ristorcelli and Clark hypothesized that for a self-similar state

to exist, � must reach an asymptotic value beyond the transition to the turbulent,

self-similar regime. While many of the numerically-measured turbulence and mix-

ing statistics, such as hw02i ; h�0w0i and h�02i, collapsed onto apparently self-similar

pro�les, an asymptotic value of � was never attained. Ristorcelli and Clark (2004)

showed similar qualitative results to those shown here despite a signi�cant di¤erence

in initial conditions of the �ow, where � initially decreased to some minimum value

in the early stages of development, followed by an increase towards late-time values

of � � 0:8.

The time-evolution of the volume fraction PDF (�gure 3.1) and molecular mixing

fraction (�gure 3.2) indicate the same imbalance between the rates of �uid engulfment
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and molecular mixing. The term �engulfment�is intended in this case because term

�entrainment�is typically used in shear layer applications where the physical mecha-

nism by which �uid enters the mixing layer is di¤erent than that of a Rayleigh-Taylor

driven mixing layer. First, a transition exists at a given time early in the develop-

ment of the mixing layer where the rates of �uid engulfment and molecular mixing are

matched. Before the onset of strong nonlinearities, the growth of the initial buoyant

structures engulfs unmixed �uids into the mixing layer. Beyond this transition, the

rate of molecular mixing due to turbulent mixing is greater than the �uid engulfment

rate. As � increases, the ratio of the engulfment and molecular mixing rates shows

the tendency towards reaching some degree of balance. Dimotakis (2000) proposed

that a point exists in a turbulent �ow, where above the limit of Re � LU=� � 104

or Re� � �u0=� � 100, turbulent motions increase the rate of molecular mixing as

opposed to turbulent straining of the two-�uid interface, where Re is a large-scale

Reynolds number, L and U are selected length and velocity scales, Re� is the Taylor-

Reynolds number, and � is the Taylor microscale (Pope 2000). Previous researchers

have measured the Taylor-Reynolds number in the water channel at � = 1:21 to be

Re� � 60 (Ramaprabhu & Andrews 2004a). Thus, these experimental measurements

fall short of the proposed Taylor-Reynolds limit set by Dimotakis. Consequently, it

is unclear whether an asymptotic value of � is achievable or if the mixing transition

can occur in this �ow, based upon these criteria.

Also of interest is the range of scales present in the �uctuating density �eld.

Figures 3.3�3.6 show the time-evolution of the density power spectra, which have

not been normalized so that they may be directly parameterized and implemented in

numerical simulations of the experiment. These topics will be addressed in Sections

4 and 5.

The early-time spectra (� = 0:004 and � = 0:04) shown in �gure 3.3 exhibit a
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Figure 3.3 Density power spectrum for � = 0:004 (above left) and � = 0:04 (above

right). The compensated spectrum for � = 0:004 exhibits a power-law of

k�5 (below left) which di¤ers slightly from the power-law of k�6 shown at

� = 0:04.
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Figure 3.4 Density power spectrum for � = 0:19 (above left) and � = 0:39 (above

right). The compensated spectrum for � = 0:19 exhibits a power-law of

k�5 (below left) which di¤ers from the power-law of k�3 shown at � = 0:39

(below right).
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Figure 3.5 Density power spectrum for � = 0:72 (above left) and � = 1:12 (above

right). The compensated spectrum for � = 0:72 (below left) and � = 1:12

(below right) exhibit an apparent power-law of k�3.
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Figure 3.6 Density power spectrum for � = 1:46 (above left) and k�3 compensated

spectrum (below right). The k�5=3 compensated spectra for � = 1:12 (above

right) and � = 1:46 (below right) exhibit less than one decade of modes

that apparently scale as E�(k) � k�5=3.
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broad-band of perturbations that exist at the onset of the instability; however, the

density power spectrum at � = 0:04 has considerably more energy in the wavenumber

range of 0:1 < k < 4. This is due to the fact that the initial perturbations in the

streamwise direction are driven by velocity �uctuations. At � = 0:004, or x = 0:1 mm

from the trailing edge of the splitter plate, the velocity perturbations have not had

su¢ cient time to deform the interface, resulting in the di¤erence in energy content

between 0:1 < k < 4. The peak value of E�(k) at k � 10 for both � = 0:004 and

� = 0:04 is believed to be imposed by the combination of the splitter plate and end-

screen, and not by velocity perturbations. A qualitative relationship between the

initial density and velocity spectra will be presented in the next section. From linear

stability analysis of a Rayleigh-Taylor unstable interface including viscous e¤ects, the

most unstable wavelength may be determined from (Chandrasekhar 1961):

�m � 4�
�
�2Ag

�1=3
: (3.1)

Assuming that � � (�1 + �2)=(�1 + �2) and A = 7:5 � 10�4, the most unstable

wavelength is �m = 0:53 cm or k � 12 cm�1. The peak density perturbation of

the density spectra at � = 0:004 (x = 0:1 cm) approximately matches the most

unstable wavelength with a peak at k = 11 cm�1. The relationship between the

initial density spectrum and the spectrum of vertical velocity �uctuations near the

edge of the splitter plate will be discussed further in §3.2.

While the early-time (� = 0:004 and � = 0:04) spectra exhibit broad-banded

energy content, the peak perturbations occur in the intermediate-wavenumber range,

1 < k < 10. For both cases, the peak perturbations have energy content that is two

orders of magnitude greater than the long-wavelength content of the spectrum. Relat-

ing the energy content to the amplitude of the perturbation, jb�(k)j =pE�(k), yields
a ratio of peak perturbation amplitude to long-wavelength perturbation amplitude of
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b�peak=b�k<1 � 10.
As the mixing layer develops, an apparent short-wavelength scaling of k�3 can

be seen in the intermediate wavenumbers for � = 0:19 and � = 0:39, as shown in

�gure 3.4. While no formal theory has been developed explaining such a scaling,

similar results have been reported by researchers investigating turbulent buoyant

plumes (Papanicolaou & List 1987; Dai et al. 1994; Fisher & Ball 1999) and also by

previous researchers using the water channel to study Rayleigh-Taylor mixing (Wilson

& Andrews 2002; Ramaprabhu & Andrews 2004a). Wilson and Andrews hypothesize

that an inertial-di¤usive range exists where concentration (or density) �uctuations

persist to higher wavenumbers than do velocity �uctuations, because the thermal

di¤usivity is almost an order of magnitude less than the kinematic viscosity in the

water channel.

At later times, � = 1:12 and � = 1:46, an apparent short inertial range scaling

of k�5=3 is formed, where the k�5=3 compensated spectra shown in �gure 3.6 occupies

less than one decade of wavenumbers. Wilson and Andrews (2002) and Ramaprabhu

and Andrews (2004a) reported similar �ndings at these downstream positions using

larger thermocouples. Ramaprabhu and Andrews have shown that at � = 2:08,

an inertial range for E�(k) exists over approximately one decade of wavenumbers.

Ramaprabhu and Andrews also estimated the integral-scale Reynolds number at � =

1:21 to be Re � LU=� = 1000�1450, depending upon the choice of lengthscale L

and velocity-scale U used, indicating the minimum Reynolds number required for the

initial formation of an inertial range for the Atwood and Schmidt numbers of the

experiment.
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Figure 3.7 Field of wrms at downstream locations x = 0�2:5 cm.

3.2 Velocity Measurements

Velocity measurements were taken in the xz-plane so that the initial velocity

�uctuations present at the trailing edge of the splitter plate could be quanti�ed. A

contour plot of wrms is shown in �gure 3.7, where the wake behind the splitter plate

is clearly visible. The peak wrms values occurring to the left of the image are residual

noise from the laser light re�ected from the steel end-screen and do not represent

physical values. An accurate measurement of wrms in the limit of x ! 0 cm is not

feasible due to this noise. However, it is possible to examine the decay of wrms along

the centerline of the �ow so that wrms(x = 0) may be estimated. Figure 3.8 shows

the spatial-evolution of wrms on a logarithmic scale, showing that wrms � x�1=2 as

x! 0. This relationship will be used later in §4.3 to estimate the total kinetic energy

in the initial velocity spectrum at � = 0.
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Figure 3.8 Early-time decay of wrms in the streamwise direction following the trailing

edge of the splitter plate with the channel in a non-buoyant con�guration.

Similar to the measurement of the density �uctuations, the measurement of the

initial vertical velocity spectrum Ew(k) is crucial to the determination of the initial

momentum perturbation on the two-�uid interface. Figure 3.9 shows the measured

velocity spectrum at x = 0:5 cm downstream from the splitter plate. The total energy

content at the centerline of the �ow is determined by integrating the spectrum shown

in �gure 3.9 across all wavenumbers, where

Ew(x) =

Z kmax

kmin

Ew(k; x) dk (3.2)

=


w02
�
(x)

= w2rms(x) : (3.3)

Using the relationship that wrms(x) � x�1=2, then Ew (x) � x�1 and assuming negli-

gible spectral transfer, it is possible to scale the measured spectrum Ew(k; x = 0:5)
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to estimate Ew(k; x = 0). The spectrum shown in �gure 3.9 is also in its dimen-

sional form so that it may be directly parameterized in a numerical simulation of the

experiment.

Figure 3.9 Spectrum of w �uctuations at x = 0:5 cm from the splitter plate.

The velocity spectrum shown in �gure 3.9 can be qualitatively related to the

early-time density spectra shown in �gure 3.3. The density spectrum at � = 0:04

contains roughly three local maxima at k � 0:8; 2:5; 9:0. The peak value that occurs

at k = 9:0 does not correspond to a local maximum in the velocity spectrum in �gure

3.9, and therefore is believed to be a remnant of the splitter plate and end-screen.

However, the maxima at k = 0:8 and k = 2:5 do correspond to local maxima in the

vertical velocity spectrum at wavenumbers k = 0:7 and k = 2:0. Discrepancies be-

tween the exact peak wavenumber of E�(k) and Ew(k) are attributed to experimental
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uncertainties. This qualitative correlation implies that the evolution of the density

spectra at early times in the experiment are driven by the �uctuations in the veloc-

ity �eld and not by the deposition of baroclinic vorticity due to the Rayleigh-Taylor

instability.

While vertical velocity �uctuations are believed to be the dominant mechanism

contributing to the initial development of the Rayleigh-Taylor mixing layer in the

water channel experiment, the current set of measurements allow for the quanti�-

cation of some second-order e¤ects at � = 0. The same measurements for Ew(k)

allow the quanti�cation of the velocity de�cit in the wake trailing the splitter plate.

Ramaprabhu (2003) reported a velocity de�cit of approximately 10% of the mean

advective velocity at x = 1:0 cm from the splitter plate. This de�cit was negligible at

x = 2:0 cm, as buoyancy e¤ects began to dominate the dynamics of the mixing layer.

The current measurements exhibited a 5% di¤erence between the mean advective ve-

locity (Um = 4:1 cm/s) and the minimum velocity within the wake (umin = 3:9 cm/s)

at x = 0:5 cm downstream, as shown in �gure 3.10. This reduction in the velocity

de�cit behind the splitter plate is attributed to the existence of smaller boundary

layers at the knife-edge of the splitter plate. The smaller boundary layers are a result

of modi�cations to the upstream screen meshes, which is discussed in Appendix C.

3.3 Spanwise Measurements

Measurements in the spanwise direction were performed to quantify the initial

interfacial perturbation at the interface between the cold and hot �uids. Once the

interfacial perturbation in the spanwise direction �(y) has been measured, the corre-

sponding energy spectrum E�(k) can be computed and parameterized. Figure 3.12

shows the interfacial perturbation spectrum for one captured image, where other im-
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Figure 3.10 The variation of hu (z)i at � = 0:018 for the experiment with the water

channel in a non-buoyant con�guration.

ages produced similar spectra. The spectrum shows a broad band of perturbations,

with most of the energy content between intermediate wavenumbers or wavelengths

0:16 < � < 5:0 cm, well within the water channel width of 20 cm. The maximum

5 cm wavelength is attributed to the maximum width of the laser sheet achievable

at the two-�uid interface. A PLIF image of the spanwise interfacial perturbation is

shown in �gure 3.11.

A key result of this experiment was the determination that velocity perturbations

in the spanwise direction are negligible. This was con�rmed by inspection of the �u-

orescing dye while the experiment was operating. If a spanwise velocity perturbation

existed, the waveform created by the splitter plate and end-screen would oscillate in

the y-direction. However, no such oscillation was observed, eliminating the need to
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Figure 3.11 PLIF image of spanwise interfacial perturbation.

perform velocity measurements in the yz-plane.
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Figure 3.12 Spectrum of spanwise interfacial perturbations.
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4. PARAMETERIZATION OF INITIAL CONDITIONS

4.1 Overview of Parameterization Methods

A principle objective of this research is to quantify and to parameterize the

initial conditions measurements presented in Section 3 so that they could be im-

plemented in numerical simulations of the experiment. This has been accomplished

through the spectral representation of the initial density (interfacial) and velocity

�uctuations, rather than their pointwise values. The motivation for this is as follows.

First, it allows for simulations using periodic boundary conditions in the homogeneous

directions (directions not aligned with gravity) to be initialized with experimentally-

measured perturbations, while avoiding discontinuities at the boundaries. A spectral

representation of the initial perturbations is also used so that a degree of stochastic

abstraction could be achieved. This is desirable because all of the initial condition

measurements were taken in a series of experiments. Thus, there is no assurance

that the exact perturbation and phase distribution measured will occur in exactly

the same fashion from one experiment to another, but statistical convergence of the

initial perturbation spectra is possible. Each measurement from Section 3 is treated

individually in the following sections.

It is important to recognize that the parameterization of the initial conditions

in this investigation di¤ers from most initializations listed in §1.3 and table 1.1, in

that isotropic initial perturbations are not assumed or implemented. For the wa-

ter channel experiments, velocity or density �eld values are perturbed in orthogonal

directions. In three-dimensional simulations using isotropic initial conditions, the ini-

tial perturbation spectrum is E�(k2D), where k2D �
p
k2x + k

2
y and kx and ky are the

wavenumbers in each homogeneous direction. Thus, the amplitudes of the interfacial

�uctuations b�(k2D) are equal for any two wavevectors k2D of the same length, by the
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de�nition of isotropy. The initial perturbation for an isotropic perturbation �eld is

de�ned

�(x) =

Z b�(k) eik�x dk: (4.1)

To place equation (4.1) into context, it is rewritten as a product of two Fourier series

in its discrete form

�(x; y) =
X
kx;ky

n
Re
hb�(kx)i cos (kx x)� i Imhb�(kx)i sin (kx x)o (4.2)

�
n
Re
hb�(ky)i cos (ky y)� i Imhb�(ky)i sin (ky y)o :

It is discernible from equation (4.2) that two cross terms are formed in the multipli-

cation of two Fourier series resulting in the introduction of perturbations that are not

aligned with either of the orthogonal basis vectors, êx and êy. This is not the case

in the water channel experiment or in the parameterization presented here, where all

perturbations are aligned with either êx or êy. Note that two-dimensional spectra are

used to initialize Rayleigh-Taylor �ows with two directions of statistical homogene-

ity (periodicity) instead of three-dimensional spectra, as used in the initialization of

simulations of isotropic turbulence. In Rayleigh-Taylor �ows, Fourier decomposition

is not possible in inhomogeneous directions (directions aligned with gravity) because

of non-periodic behavior of scalar values (i.e. density) in the z-direction.

4.2 Streamwise Interfacial Perturbation

The initial interfacial perturbation in the x-direction was obtained from the

thermocouple measurements at x = 0:1 cm and at x = 1:0 cm. The thermocouple

measurements resulted in a trace of density values �(x) at the centerline of the mix-

ing layer. However, the spectral representation of these density values b�(k) alone are
insu¢ cient to produce a trace of the interfacial perturbation �(x). To accomplish
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this transformation, a relationship between �(x) and �(x) must be assumed or hy-

pothesized. The relationship used in this investigation was a parameterization of a

perturbed, di¤use interface between two �uids of di¤erent densities, similar to that

used by Cook and Dimotakis (2001),

�(x; y; z) = h�i+ ��
2
erf

�
z + �(x; y)

"

�
; (4.3)

where �� = �1��2, " is the half-width of the di¤usion layer between the two unmixed

�uids, and erf (x) is the error function. This parameterization of the density trace

along the centerline is based upon the analytical solution to the di¤usion equation

(Mills 1999); however, one caveat applied to equation (4.3) is that di¤usion is assumed

to occur only in the z-direction. For a perturbed interface in the limit of b�(k) �
2�=k, equation (4.3) is valid. Simplifying equation (4.3) for the one-dimensional

measurements presented in §3.1, the relationship between the centerline (z = 0)

density trace and the interfacial perturbation becomes

�(x) = h�i+ ��
2
erf

�
�(x)

"

�
: (4.4)

To relate �(x) to �(x), a value of " must be chosen. It is possible to estimate an

interfacial thickness from the heat di¤usion equation, where " can be evaluated ana-

lytically as " =
p
4D t, where D � 1:5�10�3 cm2/s is the thermal di¤usivity of water

at 20� C (Mills 1999). This estimate is believed to be valid because of the minimal

deformation of the two-�uid interface in the region of 0 < x < 1:0 cm.

Given the discrete grid of a numerical simulation with periodic boundary condi-

tions, the wavenumbers supported are limited to the number of integer wavelengths

that exist in a given domain. The wavenumbers supported in each homogeneous di-

rection by a periodic grid with N grid points in each can be determined from equation

(2.10) where, in this case, L0 is the domain width of the numerical simulation and
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the supported modes span m = 1; 2; : : : ; N=2� 1.

The wavenumbers supported by a given grid resolution are independent of the

details of each experimental measurement, i.e. the sampling rate of an experiment

and the grid spacing of a simulation might di¤er, resulting in di¤erences between

the wavenumbers measured and the wavenumbers supported numerically. To remedy

this, the energy spectrum E�(k) implemented in a numerical simulation was interpo-

lated from the experimental data, using a linear interpolation of the two bounding

measured energy values. Once the numerical energy spectrum was created from the

interpolation scheme, the spectrum was scaled so that the total energy in the mea-

sured and numerical spectrum were equal. The energy is determined as

E� =

Z kmax

kmin

E�(k) dk: (4.5)

The di¤erence between the measured wavenumbers and numerically-implemented

wavenumbers indicates that caution must be exercised when using equation (4.5).

Table 4.1 shows the minimum and maximum wavenumbers for a typical thermocou-

ple experiment and numerical simulation. Thus, the integration limits in equation

(4.5) must contain only the overlapping wavenumber domain of the simulation and

experiment.

For completeness, all numerical simulations were initialized with an initially-

di¤use interface of thickness � = 2". Joseph (1990) and Sandoval (1995) showed that

for two miscible, incompressible �uids, the divergence of the velocity �eld

r � u 6= 0 (4.6)

= �r �
�
D

�
r�
�
;

where D is the mass di¤usivity. Thus, because an initially di¤use interface exists in
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kmin cm�1 kmax cm�1

Typical Experiment
Um = 4:2 cm/s

0:025 (Density)
0:037 (Velocity)

374 (Density)
22:4 (Velocity)

Two-dimensional DNS
1024� 1024 grid points

32 cm� 32 cm
0:196 101

Three-dimensional DNS
256� 128� 256 grid points
16 cm� 10 cm� 16 cm

0:393 50:3

Table 4.1 Minimum and maximum wavenumbers for a typical experiment and for rep-

resentative two- and three-dimensional DNS.

the parameterization of the initial density �eld, there must also exist a velocity �eld

u = �D
�
r� : (4.7)

All of the simulations presented in the current investigation, regardless of their ini-

tialization, satisfy the criteria listed above by imposing the velocity �eld speci�ed by

equation (4.7).

4.3 Streamwise Velocity Perturbation

Implementation of an initial velocity perturbation requires a di¤erent approach

than that used for the interfacial perturbations. As shown by equations (4.3) and

(4.7) in §4.4, the perturbation at the centerplane �(x; y) is the only quantity required

to initialize the density �eld �(x; y; z) and the velocity �eld u(x; y; z). For the case

of initial velocity conditions, speci�cation of the entire two-dimensional velocity �eld

is accomplished by the sum of three independent velocity �elds, which are discussed



54

below.

To form the two-dimensional velocity �eld, the �rst information used from the

experimental measurements was the energy spectrum of the vertical velocity com-

ponent at x = 0:5 cm from the splitter plate. Assuming a uniform distribution of

random phases '(k), the Fourier amplitudes of each wave bw(k) = p
Ew(k) were

calculated. Like the numerically implemented, streamwise, interfacial perturbation

spectrum, values of bw(k) were interpolated from the experimentally-measured val-

ues. Once the amplitude and phase of each wave at the centerline was calculated, a

two-dimensional, perturbed velocity potential �eld is created (Drazin & Reid 2004):

�(x; y; z) =
kmaxX

k= kmin

bw(k)
k

sin [k x+ '(k)] e�k jzj ; (4.8)

where '(k) is the phase associated with each mode bw(k). The velocity �eld associated
with the perturbed potential �eld is created by

u =r� : (4.9)

For completeness, it is noted that the initial velocity �eld was created by di¤er-

entiating the potential �eld using a fourth-order central-di¤erencing scheme in both

coordinate directions. Boundary conditions in the x-direction were assumed to be pe-

riodic, eliminating all discontinuities in �. However, discontinuities in � exist in the

z-direction at the top and bottom boundaries and at the centerline. To account for

the discontinuities, a one-sided, fourth-order di¤erencing scheme was used. Images of

sample initial u velocity and w velocity �elds generated from a potential � are shown

in �gure 4.1.

To complete the parameterization of the initial velocity conditions, the initial

velocity de�cit that occurs at the trailing edge of the splitter plate was also included
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Figure 4.1 Illustration of the initial velocity potential �eld (top), u velocity �eld (mid-

dle), and w velocity �eld (bottom). All images are from a 256� 256 DNS
with domain size of 16 cm �16 cm.
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in the initial two-dimensional velocity �eld. As the numerical simulations do not

include any mean advective velocity, the velocity de�cit was parameterized by the

inclusion of a small, negative u velocity at the centerplane, which decays to zero

away from the centerplane. A simple mathematical model is proposed to model the

velocity de�cit, such that several key criteria are satis�ed. First, the parameterization

must satisfy mass continuity, such that r � u� = 0, where u� = u�êx + v�êy + w�êz

is the velocity de�cit �eld. Second, the model must satisfy the boundary conditions

u(z) = 0 as z ! �1. Two possibilities for the parameterization of the initial velocity

de�cit are

(u�; v�; w�) =
�
udef e� jzj=L; 0; 0

�
(4.10)

and

(u�; v�; w�) =
�
udef e� z

2=L2 ; 0; 0
�
; (4.11)

where udef is a constant negative velocity, and L � 0:3 cm is a lengthscale selected so

that the implemented velocity pro�le matches the experimentally-measured pro�le.

Both parameterizations satisfy continuity, in that r � u� = 0, and both go to zero as

jzj ! 1. For this investigation, equation (4.11) was used to parameterize the initial

velocity de�cit because it is a smooth function over the domain z = (�1;1).

The �nal portion of the velocity �eld was created from equation (4.7). All

three portions of the initial velocity �eld are combined to form the �nal initial, two-

dimensional velocity �eld such that

u(x; t = 0) =r�+ u� � D
�
r� : (4.12)

By construction, equation (4.7) is satis�ed and, therefore, mass conservation was also

satis�ed.



57

4.4 Spanwise Interfacial Perturbation

The spanwise interfacial perturbation is possibly the simplest to implement,

in that this perturbation is measured directly from a single PLIF image and no

transformations are required. The interfacial perturbation in the y-direction is formed

from the inverse Fourier transform of b�(k) =pE�(k) assuming a uniform distribution
of random phases. Like the streamwise interfacial and velocity perturbations, the

numerically-implemented values of b�(k) are interpolated from the measured values ofb�(k).
The only assumption required to implement the spanwise interfacial perturbation

is the need to extend the lower bound of wavenumbers measured to match the domain

of a numerical simulation. The minimum wavenumber measured from the PLIF

image is k � 0:82 cm�1, corresponding to a wavelength � � 7:7 cm. For numerical

domain sizes greater than 7:7 cm, an unphysical periodicity can be added to the �ow.

While simulations in which isotropic initial perturbations at the two-�uid interface

are assumed may incorporate wavelengths less than the domain width of interest,

the anisotropic initial conditions in the investigation prohibit this. To overcome this

limitation (albeit physical in nature) the modes with wavenumbers k < 0:82 cm�1 are

given an assumed energy and phase. This assumption is validated by the existence

of a slight bowing of the splitter plate at its trailing edge, which can be seen on the

right-hand side of �gure 3.11. While this bowing e¤ect is not a periodic perturbation

that can be implemented in the numerical simulation, it does introduce a perturbation

below the lowest measured wavenumber. While this assumption is stated explicitly,

the e¤ects of this assumption on the solution within the time of interest have yet to

be determined and understood.
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5. DIRECT NUMERICAL SIMULATIONS AND COMPARISONS TO

EXPERIMENTAL DATA

5.1 Preliminaries

The use of direct numerical simulations (DNS) for this study was chosen for

several reasons. First, the water channel experiment is an ideal candidate for DNS,

in that the computational expense associated with DNS scales as Re3. This renders

very high Reynolds number experiments currently impossible to simulate using DNS,

such as the experiments performed by Read (1984) and by Dimonte and Schneider

(1996) inaccessible. Depending on the Reynolds number de�nition, Ramaprabhu and

Andrews (2004a) report values of Re � 1000�1450 at � = 1:21. The simulation of a

�ow with such a Reynolds number is achievable using DNS without the need for a large

allocation of computing resources. Furthermore, the physical size of the experiment

(20 cm � 32 cm cross-section) is amenable to DNS, allowing for the full range of

scales to be represented on a discrete grid. Also, statistically-stationary turbulence

and mixing statistics have been measured in the water channel experiment, allowing

for direct statistical comparisons to be made between experimental and numerical

simulation data. In particular, accurate measurements of the degree of molecular

mixing require the ability to resolve the smallest scales of motion where mass di¤usion

is most e¤ective. The ability to measure the statistics of �uctuating quantities in the

water channel also allows the measurement, parameterization, and use of realistic

initial perturbations in DNS.

Another theme of the current numerical study is the determination of the quanti-

tative di¤erences between two- and three-dimensional simulations of Rayleigh-Taylor

instability growth and mixing. This goal is motivated by the desire to provide more

predictive models without the need for computationally-expensive, three-dimensional
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calculations of �ows that occur in complex systems, such as in high-energy density

applications (Kilkenny et al. 1994; Haan et al. 1995; Lindl 1998). Results will

be shown comparing two- and three-dimensional simulations initialized with analo-

gous, experimentally-measured initial conditions. Di¤erences between the results of

the simulations will be highlighted and the underlying physical mechanisms that are

responsible for these di¤erences will be discussed.

5.2 Numerical Scheme

The numerical simulations for this research have been performed using a spec-

tral/compact �nite-di¤erence code developed at the Lawrence Livermore National

Laboratory (LLNL) primarily for the direct and large-eddy simulation of Rayleigh-

Taylor instability-generated turbulence (Cook & Dimotakis 2001; Cook et al. 2004).

The code solves the mass, momentum, and species di¤usion equations on a Cartesian

grid. For the present investigation, the code was used to perform DNS, in which the

entire range of scales are resolved within a turbulent �ow. Spatial derivatives are com-

puted using spectral methods in the homogeneous x- and y-directions and tenth-order

compact �nite-di¤erencing in the inhomogeneous z-direction. Time is advanced using

a third-order Adams-Bashforth-Moulton scheme for all timesteps with the exception

of the �rst, which employs a forward Euler scheme. To avoid complex in�ow and out-

�ow boundary conditions, the numerical simulations had no mean �ow component.

Boundary conditions in the homogeneous directions were periodic and no-slip/no-

penetration in the vertical direction. The code is parallelized using the MPI library

and was tuned for use on large-scale computing facilities across many processors. The

simulations were performed on the Blue Paci�c supercomputer at LLNL.
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The numerical scheme solves the mass conservation equation,

@�

@t
+

@

@xj
(� uj) = 0 (5.1)

and the momentum conservation equation,

@

@t
(� ui) +

@

@xj
(� ui uj) = � gi �

@p

@xi
+
@�ij
@xj

; (5.2)

where

�ij = �

�
@ui
@xj

+
@uj
@xi

� 2
3
�ij
@uk
@xk

�
; (5.3)

is the viscous stress tensor and

� � (�1 + �2)

2

(�1 + �2)

2
(5.4)

is the dynamic viscosity. In equations (5.1)�(5.3),

(u1; u2; u3) = (u; v; w) (5.5)

For all of the numerical simulations, gravity acts in the vertical direction such that

g1 = g2 = 0 and g3 = �981 cm/s2. The governing equations describe an incom-

pressible, variable-density �ow. The two �uid streams have been treated as miscible

and the mass di¤usion of one �uid into the other was calculated by the mass fraction

conservation equation assuming constant di¤usivity D:

@

@t
(� Y�) +

@

@xj
(� Y� uj) =

@

@xj

�
�D

@Y�
@xj

�
: (5.6)

The numerical scheme is quasi-incompressible in the sense that pressure waves are

decoupled from the governing equations and are neglected. The numerical algorithm

used in this investigation has been shown to match the growth rate of a single-mode

instability as predicted by linear theory for small-amplitude perturbations (Cook &
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Dimotakis 2001; Cook et al. 2004). To mitigate aliasing errors and oscillations

due to numerical instabilities introduced by the numerical algorithm, �ltering was

performed. Additional details regarding the �ltering techniques can be found in Cook

and Dimotakis (2001) and Cook et al. (2004).

5.3 Summary of Direct Numerical Simulations

DNS were performed to determine the optimum method of parameterization of

the measured initial conditions. Simulation parameters were chosen such that they

matched the experimental values of density, viscosity, mass (thermal) di¤usivity, and

physical domain size. A summary of these parameters is given in table 5.1. The table

shows the same values listed in table 2.1 with one subtle di¤erence. The numerical

algorithm employed solves the di¤usion of mass species, whereas heat di¤usion occurs

in the experiment. It is assumed that Pr = Sc = 7 in all simulations to calculate the

molecular di¤usion of one �uid into another.

A summary of the parameterized initial conditions is given in table 5.2. Both

three-dimensional simulations employ the same interfacial perturbation in the span-

wise direction, while di¤ering only in the streamwise perturbations. Also, due to

numerical stability and resolution issues, the domain sizes of the three-dimensional

simulations are nominally half of the domain size for their respective two-dimensional

simulations.

5.4 Qualitative Results

The evolution of the density �eld and growth of a Rayleigh-Taylor mixing layer in

a two-dimensional DNS with initial velocity perturbations is shown in �gure 5.1. The

two unmixed �uids (red and blue) are initially separated by a perfectly �at interface.
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Parameter Value

�1 0:9986 g/cm3

�2 0:9970 g/cm3

A 7:5� 10�4

g �981 cm/s2

�1 0:009 g/(cm s)

�2 0:011 g/(cm s)

Sc 7:0

Lx � Lz (2D) 32 cm � 32 cm

Nx �Nz (2D) 1024� 1024

Lx � Ly � Lz (3D) 16 cm � 10 cm � 16 cm

Nx �Ny �Nz (3D) 256� 128� 256

Table 5.1 Two- and three-dimensional DNS parameters.

Simulation x-direction
perturbation

y-direction
perturbation

2D
Initial Density Conditions

Interfacial
(Thermocouple)

3D
Initial Density Conditions

Interfacial
(Thermocouple)

Interfacial
(PLIF)

2D
Initial Velocity Conditions

Velocity
(PIV)

3D
Initial Velocity/Density Conditions

Velocity
(PIV)

Interfacial
(PLIF)

Table 5.2 Summary of parameterized initial conditions for two-dimensional and three

dimensional DNS.
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This �at interface is only used for initial velocity perturbation simulations and not for

initial interfacial perturbation simulations. The images show the evolution of small-

scale perturbations at � = 0:152, saturation of the initial perturbation growth rate,

and the onset of secondary Kelvin-Helmholtz instabilities by � = 0:758, and the devel-

opment of a strongly-nonlinear �ow at later times, � = 1:36 and � = 1:97. The use of

the term turbulence is avoided because of the two-dimensionality of this �ow, in which

three-dimensional e¤ects, such as vortex stretching, are not present. Aside from the

absence of vortex stretching, Schilling et al. (2004a) have shown fundamental di¤er-

ences between two- and three-dimensional MILES (using the weighted essentially non-

oscillatory method) of Richtmyer-Meshkov generated turbulence, where Richtmyer-

Meshkov instabilities represent the special case of impulse-driven Rayleigh-Taylor

�ows. Schilling et al. reported signi�cant di¤erences between rates of dilatation and

transport of vorticity and the transport and production of turbulent kinetic energy.

Both the magnitude and distribution within the mixing layer of these processes were

shown to vary signi�cantly between two- and three-dimensional simulations.

The evolution of a mixing layer from a three-dimensional DNS is shown in �g-

ures 5.2 and 5.3, where the evolution of the f1 = 0:5 isosurface is plotted. The initial

distortion of the two-�uid interface, as well as the anisotropic nature of the perturba-

tion, can be seen at early times (� = 0:304). As in the two-dimensional simulation, as

the initial perturbation saturates and Kelvin-Helmholtz instabilities begin to form by

� = 0:607. The onset of the three-dimensionality of the �ow also begins as individual

bubbles emerge from the nearly two-dimensional ripples. At the later stages of the

�ow, the two-�uid interface shown by the isosurfaces is no longer a single smooth

surface: a more complicated, strongly-nonlinear �ow has emerged. Both of the two-

and three-dimensional DNS shown in �gures 5.1�5.3 were initialized with the same

velocity spectrum in the x-direction. However, the three-dimensional DNS was also
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Figure 5.1 Evolution of the density �eld from a two-dimensional DNS with initial ve-

locity perturbations. The red and blue represent the two unmixed �uids and

intermediate shades represent mixed �uids. Images are shown at � = 0:152

(top left), � = 0:758 (top right), � = 1:36 (bottom left), and � = 1:97

(bottom right).
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Figure 5.2 Evolution of the f1 = 0:5 isosurface from a three-dimensional DNS with

initial velocity and interfacial perturbations. Images are shown at � = 0:304

(top) and � = 0:607 (bottom).
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Figure 5.3 Evolution of the f1 = 0:5 isosurface from a three-dimensional DNS with

initial velocity and interfacial perturbations. Images are shown at � = 0:910

(top) and � = 1:21 (bottom).
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initialized with a measured interfacial perturbation in the y-direction, which is not

represented in the two-dimensional DNS.

A qualitative comparison between the evolution of the water channel experiment

and DNS is possible by considering a slice of the density �eld in the xz-plane. Fig-

ure 5.4 shows a PLIF image of the experiment centered at approximately x = 35 cm

downstream at � � 1:2.1 Cross-sectional slices in the xz-plane of the density �eld from

a two- and three-dimensional DNS are also shown with approximately the same time

of development. Both experiments and simulations were initialized with stochastic

initial conditions, so that an exact comparison is not feasible. However, it is possible

to qualitatively compare both large- and small-scale features of the �ow using these

images. First, all three images exhibit large-scale structures (bubble widths) of ap-

proximately the same width. The greatest di¤erence between the images is the range

of scales present in the density �eld. Both the experimental PLIF image and three-

dimensional DNS image exhibit a broad range of detail in the small scales, whereas

the two-dimensional DNS does not. Presumably, this is due to the absence of vortex

stretching and turbulent transport in the third spatial dimension as a mechanism for

the creation of smaller scales.

While both the experimental PLIF image and the three-dimensional DNS exhibit

similar �ne scales within the density �eld, it appears that the PLIF image contains

sharper density gradients than the simulation. In fact, the true density �eld is some-

where in between the two images. In the water channel, the active scalar driving the

buoyancy-driven mixing is the temperature di¤erence between the two �uids, where

Pr � 7 for the water temperatures used in the experiment. However, the �uorescing

dye-tracer injected into the top water stream does not di¤use at the same rate as tem-

1PLIF image courtesy of W. N. Kraft.
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Figure 5.4 Comparison of slice of (a) PLIF image from experiment and PLIF-rendered

slices of density �eld from (b) 3D initial velocity/density conditions DNS

and (c) 2D initial velocity conditions DNS at � � 1:2. All images are

approximately 7 cm � 5:25 cm. Experimental image courtesy of W. N.

Kraft.
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perature, as Sc � 1000. This results in a Lewis number Le � Sc=Pr � 100. Thus,

as � increases, the di¤erence between the density (temperature) �eld and the scalar

�eld of dye concentration diverges. On the other hand, the image from the DNS

does not capture the �ne-scale structure. This is due to the fact that the current

three-dimensional DNS appears to be slightly under-resolved because of the need to

apply �ltering to mitigate aliasing errors as Re! 1000. This resulted in a smoothing

of the density gradients at the two-�uid interface. Integral-scale Reynolds numbers

for the simulations will be discussed further in §5.5.

One unique aspect of this research is that these are the �rst simulations of a

Rayleigh-Taylor �ow to implement fully-anisotropic, fully-measured, three-dimensional

initial conditions. Figure 5.5 shows the evolution of the centerplane density and ver-

tical velocity �eld for various development times. The anisotropy of the initial con-

ditions is readily distinguished at � = 0, where the interfacial (density) and vertical

velocity (w0) perturbations are initially orthogonal. However, as � increases, nonlin-

ear interactions between the orthogonal perturbations begin to create energy content

in wavevectors not aligned with êx and êy. These images suggest that the initial

conditions are a strong in�uence on the early stages of development, but at late-time,

three-dimensional turbulent transport of momentum and density drive the mixing

layer towards a state of isotropy in the homogeneous directions. At the latest time

shown, � = 1:21, a di¤erence in the detail of the density and velocity �elds is notice-

able. It is speculated that this di¤erence is the e¤ect of Sc > 1, where the di¤usion

of velocity gradients by viscosity dominates the di¤usion of density gradients by mass

di¤usion. This will discussed further in §5.6.
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Figure 5.5 Time-evolution of the centerplane density (left column) and vertical

velocity �elds (right column). Images from top to bottom are at

� = 0; 0:076; 0:304; 0:607; 1:21.
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Figure 5.6 Time-evolution of the bubble and spike fronts, hb and hs, from two- and

three-dimensional DNS.

5.5 Integral-Scale Results

A canonical measure of the growth of a Rayleigh-Taylor driven mixing layer is

the extent of interpenetration of the two �uids, typically quanti�ed by measuring the

distance between the centerplane (z = 0) and the plane in which hf1i = 0:05; 0:95.

This is typically referred to as the �bubble�hb and �spike�hs amplitudes or heights,

where the bubbles are the lighter rising �uid and the spikes are the heavier falling

�uid. This nomenclature of bubbles and spikes originates from the A ! 1 case in

which a signi�cant asymmetry exists between the growth of the rising and falling

structures (Youngs 1984). Figure 5.6 shows the evolution of hb and hs for DNS

initialized with interfacial and/or velocity perturbations. The evolution of the total

width of the mixing layer h � hb + hs is shown in �gure 5.7.

Figures 5.6 and 5.7 show several trends. First, for the domain size and time
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Figure 5.7 Time-evolution of the mixing layer width h with respect to non-dimensional

time.

of interest, both three-dimensional DNS exhibited larger mixing layer growth rates

than the two-dimensional DNS. The di¤erence in growth rates are attributed to the

di¤erences between two- and three-dimensional dynamics that are resolved, where

transport, dilatation, and production of vorticity by turbulent �uctuations in the

third spatial dimension are not present in the two-dimensional DNS (Schilling et al.

2004a). Also, the simulations which included initial velocity conditions (two- and

three-dimensional) grew faster than their counterpart two- and three-dimensional

DNS with only interfacial perturbations. This is due to the fact that the generation

of vertical velocity �uctuations which drive the advection of mass already exist at

� = 0 for simulations that include initial velocity perturbations, but are absent in the

DNS with only initial interfacial perturbations.

Another measure of the growth of the mixing layer is captured in the de�nition

of an outer-scale or integral-scale Reynolds number, where Re � LU=� and L and U
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are integral length- and velocity scales, respectively. However, because the canonical

description of this �ow includes no boundaries, there are no limits on the size and

existence of large-scale eddies. Also, unlike many canonical turbulent �ows in which

the generation of turbulence is due to a mean component of the �ow, Rayleigh-Taylor

�ows have no mean �ow component; however, the generation of large-scale turbulent

structures arises from the interaction and coalescence of smaller buoyant structures.

Thus, the selection of a length- and velocity scale becomes arbitrary and several

de�nitions have been proposed. First, the release of potential energy can be equated

to the formation of turbulent kinetic energy which gives (Snider & Andrews 1994)

Rea =

r
g A

6

(2h)3=2

�
: (5.7)

Cook and Dimotakis (2001) proposed that the mixing layer width h and time rate-

of-change of the mixing layer width _h = dh=dt adequately represent the length- and

velocity scales of the mixing layer, so that

Reb =
h _h

�
: (5.8)

Another de�nition proposed by Ramaprabhu and Andrews (2004a) suggest using the

terminal velocity of a rising bubble as the velocity scale, where the terminal velocity

is de�ned (Daly 1967; Rata�a 1973)

v1 = c1

r
�1 � �2
�1

g Rb ; (5.9)

where Rb is the radius of the bubble and c1 � 0:7 is an empirically measured con-

stant. While a statistical measure of the mean bubble radius is infeasible in many

experimental con�gurations, Ramaprabhu and Andrews assumed (in the small At-

wood limit) that the mean bubble radius is related to the width of the mixing layer
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Figure 5.8 Time-evolution of the integral scale Reynolds numberRec based on terminal

velocity of a bubble.

width, resulting in

Rec =
1:4h

�

r
Ag h

2
: (5.10)

The advantage of this formulation of the Rec is that the only measurement re-

quired to calculate the Reynolds number is the mixing layer width. The evolution of

Rec for various DNS are plotted in �gure 5.8, where a Reynolds number measured

by Ramaprabhu and Andrews (2004a) in the water channel is also plotted. It is

clear that the three-dimensional DNS with initial velocity and interfacial perturba-

tions provides the closest match to the experimentally-measured Reynolds number at

� = 1:21. With the Reynolds number (5.10), it is possible to directly compare the

mixing layer widths from the experiment and the DNS at � = 1:21, where the three-

dimensional DNS show the closest agreement with experimentally-measured values.

Figure 5.8 shows the time lag in the development of scales between two- and three-
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dimensional simulations. As discussed in the §5.4, the two-dimensional simulations

with measured initial conditions do not contain the same physics and do not evolve

in the same manner as the experiment or the three-dimensional DNS.

5.6 Small-Scale Results

A key measure of the small-scale development of the mixing layer is the time-

evolution of the molecular mixing fraction � at the centerplane of the mixing layer.

Figure 5.9 shows the evolution of �(z = 0; �) from various two- and three-dimensional

DNS, as well as the same experimentally-measured values shown in §3.1. All DNS

and experiments followed the same qualitative trend of an initial decrease from � �

0:8�1:0 to � � 0:3�0:45, followed by an increase at later times. However, there

are di¤erences between the experiment and the DNS that deserve discussion. The

experiment appears to reach a minimum value of � � 0:45 at � � 0:3, while the

simulations do not reach a minimum until later times, � � 0:5�0:6. This transition

point, beyond which the rate of molecular mixing is greater that the rate of engulfment

of unmixed �uids, is apparently highly sensitive to the initial conditions of the �ow

and appears to coincide with the transition from a weakly-nonlinear �ow to a strongly-

nonlinear �ow, as shown in �gures 5.1, 5.2, and 5.5. Further examination is required

to understand the di¤erences between the experiment and simulations with respect

to this transition point.

To further examine the evolution of the internal structure of the mixing layer, the

time-evolution of the two-dimensional density E�(k2D) and velocity Ew(k2D) energy

spectra at the centerplane of the mixing layer from both two- and three-dimensional

DNS are shown in �gures 5.10 and 5.11. The two-dimensional spectra were binned into

wavenumbers k2D =
p
k2x + k

2
y to produce one-dimensional spectra in wavenumber
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Figure 5.9 Time-evolution of the molecular mixing fraction � at the centerplane from

various DNS and experimentally-measured values.

space. Compensated spectra from both two- and three-dimensional DNS are shown

in �gures 5.12 and 5.13, respectively. Both two- and three-dimensional simulations

exhibit an inertial range scaling of kn where n > �5=3 for the density �uctuations

at later times; however, no signi�cant inertial range scaling is found for the velocity

�uctuations. A similar di¤erence between the slope of the inertial range of E�(k)

and a k�5=3 scaling was found by Cook et al. (2004) using high-resolution LES. The

existence of an inertial range for density �uctuations, while no such scaling is apparent

in the velocity �uctuations, coincides with the di¤erence in the centerplane density

and velocity �elds shown in �gure 5.5. It is believed that because Sc > 1, density

�uctuations persist at higher wavenumbers than the velocity �uctuations, allowing

for the earlier formation of an inertial range.

In the same manner that the probability density functions of the centerplane

density values are related to the measure of molecular mixing �, such a relationship
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Figure 5.10 Time-evolution of E�(k2D) (top) and Ew(k2D) (bottom) from a two-di-

mensional DNS with initial velocity perturbations.
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Figure 5.11 Time-evolution of E�(k2D) (top)and Ew(k2D) (bottom) from a three-di-

mensional DNS with initial velocity and interfacial perturbations.
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Figure 5.12 Compensated energy spectra showing the lack of a k�5=3 inertial range

scaling for E�(k2D) (top) and Ew(k2D) (bottom) from a two-dimensional

DNS with initial velocity perturbations.
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Figure 5.13 Compensated energy spectra showing the lack of a k�5=3 inertial range

scaling for E�(k2D) (top) and Ew(k2D) (bottom) from a three-dimensional

DNS with initial velocity and interfacial perturbations.
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also exists between the �uctuating density energy spectra and �. From the de�nition

of �, B2 = 0:25 at the centerplane of a Rayleigh-Taylor mixing layer, resulting in

� = 1 � 4B0. This equation can be simpli�ed further by noting that the integral

of the density energy spectrum over all wavenumbers yields the variance of density

�uctuations, similar to equation (3.2). Thus, � is linked to the evolution of the

�uctuating density spectrum by

�(�) = 1� 4
p
h�02i(�) ; (5.11)

= 1� 4

sZ kmax

kmin

E�(k; �) dk :

It is shown in the evolution of the �uctuating density spectra that, as energy develops

in the smallest wavenumbers at late time, the integral of density spectrum decreases

in value, corresponding to an increase in �.

Direct comparisons of the two-dimensional spectra from the simulations and

the experimentally-measured spectra are not feasible because the experimentally-

measured spectra are one-dimensional in wavenumber space k = kxêx. However, the

spectra shown in �gures 5.10 and 5.11 were calculated in two-dimensional wavenumber

space k = kxêx+kyêy and separated into one-dimensional wavenumber bins, assuming

isotropy in the homogeneous directions. However, this assumption of isotropy is not

valid for these simulations, especially at the early times. While a tendency towards

isotropy is shown in the later stages of the centerplane density and velocity �elds in

�gure 5.5, no quantitative measure of the anisotropy has been made. Also, Tennekes

and Lumley (1972) and Pope (2000) both point out that spectral measurements made

in one-dimensional wavenumber space are biased when the physical �uctuations exist

in two- or three-dimensional space. Thus, for comparison purposes, one-dimensional

spectra will also be computed from the simulation data, where the phase-averaged
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one-dimensional spectrum is de�ned

E�(k) =
1

Ny

NyX
j=1

E�(k; j) ; (5.12)

where � is any scalar quantity and j is the row of grid points along which a one-

dimensional spectrum E�(k) has been calculated. Figures 5.14 and 5.15 show the

phase-averaged, one-dimensional spectra for the same two- and three-dimensional

DNS shown in �gures 5.10 and 5.11. For both �gures, the numerical spectra have

been superimposed on top of the experimentally-measured density spectra from the

same development time � .

The density spectra from the two-dimensional DNS with initial velocity per-

turbations exhibit very good agreement with the experimentally-measured density

spectra at � = 0:39; 0:72; 1:12, with the only discrepancy occurring at the lowest

wavenumbers. This is explained by the lack of statistical convergence in the lower

wavenumbers of the density and velocity spectra, limited by the domain width of the

simulation Lx = 32 cm. This distance is small when compared to the experimental

measurements which were taken over a distance of L � 250 cm, converting time to

space by Taylor�s hypothesis. Comparisons between the three-dimensional DNS and

the experimentally-measured density spectra show similar results, with one exception.

The spectral cascade between the density �uctuations at the highest wavenumbers

in the three-dimensional DNS occurs at a slower rate than in the experiment, where

E�(k) � kn, n > �3. It is hypothesized that this occurs because of the limited

grid resolution applied to the numerical domain which resulted in the introduction

of aliasing errors into the domain seen in the up-turn of the spectra at the highest

wavenumbers. Filtering of the DNS was necessary to mitigate these errors. Also, the

limited resolution of the three-dimensional DNS a¤ects the spectral resolution of the
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Figure 5.14 Time-evolution of the density spectrum from a two-dimensional DNS with

initial velocity perturbations at: (a) � = 0:19; (b) � = 0:39; (c) � = 0:72,

and; (d) � = 1:12. Experimentally-measured density spectra at equivalent

times are shown in black.
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Figure 5.15 Time-evolution of the density spectrum from a three-dimensional DNS

with initial velocity and interfacial perturbations at: (a) � = 0:19; (b)

� = 0:39; (c) � = 0:72, and; (d) � = 1:12. Experimentally-measured

density spectra at corresponding times are shown in black.
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higher modes, where all wavenumbers k > 12:6 are supported on 4 grid points per

wavelength, or less. The exact results of the numerical �ltering, aliasing errors, and

lack of spectral resolution in the higher wavenumbers of the spectra are not exactly

known, but should be assessed with higher-resolution simulations.

Also, the phase-averaged density spectra from the three-dimensional DNS appear

to contain less noise content than the two-dimensional DNS and the experiments. This

is attributed to a greater degree of averaging that is performed in the calculation of the

density spectra from the three-dimensional simulation, eliminating statistical noise.

Such an averaging procedure is not capable of being performed in the experiment and

two-dimensional DNS and experiments because density information in the spanwise

direction is either not known or constrained by the simulation.
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6. CONCLUSIONS

6.1 Experimental Conclusions

In this investigation, the initial velocity and density �uctuations present at the

trailing edge of the splitter plate in a statistically-stationary, small Atwood number,

Rayleigh-Taylor mixing layer experiment have been measured. Initial density �uctua-

tions in the streamwise (x) direction were measured using new high-resolution, E-type

thermocouples with a weld bead diameter of 0:16 mm. The new thermocouples were

also used to measure the energy spectra of density �uctuations and the degree of

molecular mixing at the centerplane of the mixing layer for several stages of develop-

ment. The initial velocity �uctuations (u0 and w0) in the near wake (x = 0:5 cm) of

the splitter plate were measured with PIV in the water channel using a non-buoyant

con�guration. Two-�uid interfacial perturbations were measured in the transverse

(y) direction using PLIF. The summation of the three measurements performed con-

stitute the �rst complete, three-dimensional measurement of the initial conditions of

a Rayleigh-Taylor unstable interface. Conclusions stemming from this work are listed

below.

� The initial interfacial perturbation was shown to contain a broad-banded pertur-

bation in wavenumber space with a steep drop-o¤ at the largest wavenumbers.

The peak perturbation at x = 0:1 cm downstream from the splitter plate was

at k � 11 cm�1, which is one order of magnitude greater in amplitude than all

of the other perturbations present at x = 0:1 cm. It is speculated that these

perturbations are imparted on the two-�uid interface by the splitter plate and

end-screen combination.

� The spectrum of initial velocity �uctuations due to the wake shedding e¤ect

behind the splitter plate has been measured. The momentum de�cit in the
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wake of the splitter plate was shown to be minimal, where udef=Um = 0:05.

� The two-�uid interfacial perturbation in the spanwise (y) direction has been

measured using o¤-axis imaging techniques and characterized by an interfacial

perturbation spectrum E�(k). Velocity perturbations in the spanwise direction

were found to be negligible.

� The evolution of the molecular mixing fraction at the centerplane �(z = 0; �)

was measured using new, higher resolution thermocouples. It was found that

� decreased to a minimum value at � � 0:3, similar to the �ndings of previous

researchers. However, the minimum value of � was found to be smaller than

previously measured by Wilson (2002) and Ramaprabhu and Andrews (2004a),

where a minimum of � � 0:45 was reached.

6.2 Numerical Conclusions

The measurements of initial interfacial and velocity perturbations were used to

parameterize the initial conditions of two- and three-dimensional DNS of the wa-

ter channel experiment. These simulations are the �rst DNS of the water channel

experiment. Major contributions and conclusions are highlighted below.

� Methods for implementing fully-measured, fully-anisotropic interfacial and ve-

locity perturbations of a Rayleigh-Taylor �ow have been demonstrated in DNS

of the water channel experiment. All initial perturbations have been based on

measured, one-dimensional energy spectra, E�(k) and Ew(k), with no ad hoc

perturbations.

� DNS using measured initial velocity perturbations in the streamwise direc-

tion and interfacial perturbations in the spanwise direction exhibit the clos-



88

est match to the large- and small-scale results measured from the experiment.

This contributes to the hypothesis that Rayleigh-Taylor experiments are con-

trolled initially by the deposition of momentum at the two �uid interface, rather

that the deposition of baroclinic vorticity at a stationary, perturbed interface

(Ramaprabhu & Andrews 2004b; Schilling et al. 2004b).

� A transition in the degree of mixedness at the centerplane of the mixing layer

has been shown, such that � decreases until this point is reached and increases

thereafter. Empirical and numerical observations suggest that this transition is

related to the saturation of the initial perturbations and to the onset of Kelvin-

Helmholtz instabilities. Therefore, this transition point in time and value of �

is very sensitive to the initial conditions.

� The spectral cascade of density variance develops an inertial range scaling of

not quite k�5=3 over one decade of wavenumbers, similar to the inertial range

scaling of E�(k) found by Cook et al. (2004) using high resolution LES. No

such range is apparent in the vertical velocity �uctuations. The formation of a

spectral cascade power-law in E�(k) before an inertial range scaling is noticed in

Ew(k) is presumably due to the di¤erence in mass and momentum di¤usivities,

where Sc = 7.

� Three-dimensional DNS of the water channel exhibited a faster mixing layer

growth rate than two-dimensional DNS with analogous initial conditions for

the time span occurring in the experiment.

6.3 Future Work

The work conducted in this investigation can be extended in several directions:
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� Experimentally, it would be advantageous to extend the measurement principles

presented in this work to higher Atwood number, gas-phase experiments. This

would directly relate the experimental investigation of higher Atwood number

�ows and the initialization of higher Atwood number, three-dimensional numer-

ical simulations.

� Another experimental extension of this work would be to use the same water

channel to study the e¤ects of mass di¤usivity upon the growth and internal

development of a Rayleigh-Taylor mixing layer. This could be accomplished

through the use of fresh and salt water to create the density di¤erence between

the streams, resulting in Sc � 1000.

� The water channel arrangement could be run in a variable density arrangement,

where the two �uids are chemically reacting. In such an experiment, the degree

of molecular mixing could be measured by the chemically reacting indicators,

such as acidity indicators. This experiment would then allow for a more global

measurement of the amount of mixing across the mixing layer width.

� The parameterization of the initial conditions in the streamwise direction can

be enhanced to include both the e¤ects of the initial interfacial perturbations

and initial velocity perturbations. While it is believed that the initial velocity

perturbations are the primary driver of the two-�uid interface as � ! 0, the

inclusion of the interfacial spectrum measured at � = 0:004 would include the

perturbations at k � 11 cm�1 that are imparted by the end-screen. Perhaps

this interfacial perturbation, coupled with the initial velocity perturbation and

spanwise interfacial perturbation, is responsible for the transition to a strongly-

nonlinear �ow at � < 0:5.
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� With respect to the lower Atwood number simulations presented in this work, it

is desirable to increase the spatial resolution of the three-dimensional DNS, so

that the initial conditions and �uctuating density and velocity �elds are better

resolved.

� One of the motivations driving this research is the goal of modeling the turbulent

Rayleigh-Taylor mixing process with respect to the initial perturbations of the

�ow. In this respect, it is useful to further analyze the DNS data to provide

insight into the internal structure of the turbulence and mixing processes by

examining the evolution of correlations between the velocity and density �elds.

Also, the initialization of the turbulence and mixing models can be accomplished

by examining the early-time e¤ects of initial conditions on the transition to a

strongly-nonlinear �ow.

� Concerning the subject of turbulence and mixing model development, the exam-

ination of the di¤erences from two- and three-dimensional DNS could provide

insight into the development of models that simulate three-dimensional physical

e¤ects within two-dimensional simulations (Schilling 2004). The bene�t to this

research lies in the ability to perform economical, two-dimensional simulations of

more complicated physical con�gurations in the pursuit of experimental design

goals rather than the elucidation of the fundamental hydrodynamic processes.

� One interesting aspect of this work is that it reports on the results of three-

dimensional DNS which were initialized with fully-anisotropic perturbations.

While a tendency towards isotropy was observed at later times, no formal ex-

amination of the anisotropy of the density �eld or rate-of-return to isotropy has

been performed. Such a measure could prove to be insightful with respect to the

e¤ects of initial conditions on the development of a three-dimensional mixing
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layer.
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APPENDIX A

SCALAR MEASUREMENT ERROR IN DIFFUSION AND MIXING PROCESSES

1

In variable-density, multi-�uid and reacting �ows, a quantitative measure of the

degree of molecular mixing is crucial to the development of turbulent transport and

mixing models. Characterization of Rayleigh-Taylor instability-induced mixing and

other mixing processes requires scalar measurement devices with an adequate probe

volume size. Spatial-averaging, which occurs due to the �nite probe volume size, can

lead to errors in resolving the density or scalar gradients between pockets of unmixed

�uids. Given a probe volume size and a priori knowledge of the functional pro�le of

the di¤usion layer being measured, it is possible to estimate the measurement error

due to spatial-averaging that has occurred and make corrections accordingly.

Assume that two �uids are separated by an interface, but are not mixed at t = 0.

Any perturbation on that interface will produce an interface as seen in �gure A.1

and a scalar trace at the centerline similar to the unmixed case (solid line) shown in

�gure A.2. The evolution of miscible �uids or scalars is controlled by the growth of

the initial perturbation by external forces and by the di¤usion of the scalar values at

the interface. In the single-mode case, the two parameters required to analytically

evaluate � are the wavelength of the interfacial perturbation, �, and the width of the

interfacial di¤usion layer, L.

In this investigation, it is of interest to understand how B0 and � change with

respect to L=�, the ratio of the di¤usion thickness to the wavelength of the perturba-

tion. Over a range of L=� values, it is possible to evaluate B0, B2, and � as a function

1Portions of this section, including all �gures, have been reprinted with permission
from Mueschke & Andrews (2004). Copyright ASME 2004.
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Figure A.1 Schematic of a perturbed interface between two �uids or scalars.

Figure A.2 Representative cases of centerline scalar traces for completely unmixed

scalars (solid line) and completely mixed scalars (dashed line).
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of L=� if a functional pro�le of the scalar di¤usion layer is known or assumed. An

error function pro�le will be used as the functional form of the scalar di¤usion layer

pro�le, where

�(x) = h�i+ ��
2
erf
�x
L

�
; (A.1)

�� = �1 � �2 and �1 and �2 are the scalar values of interest. This is reasonable as

the error function represents the analytical solution to the scalar di¤usion equation,

where L is typically de�ned as L �
p
4D t and D is the scalar di¤usivity (Mills 1999).

Broadwell and Briedenthal (1982) showed that a di¤usion pro�le, under the in�uence

of a strain �eld S, retains its error function pro�le, but the value of L is modi�ed

such that L0 =
p
D=(2S). This is important to the present investigation, where the

measured di¤usion pro�les occur in dynamically-evolving �ows.

Figure A.3 shows the centerline density trace for a range of L=� values. This

evolution of the density trace is physically equivalent to the perturbed surface never

changing in form and scalar di¤usion being the only dynamic mechanism. Figure A.4

shows the analytically calculated values of B0, B2, and � for a range of L=� values.

It is clearly seen that as the scalar � di¤uses, more mixed �uid is present at the

centerline, and the value of � increases as expected.

It is worth noting that a typical representation for the lengthscale of a di¤usion

pro�le is based upon a length between speci�ed percentage values of a scalar concen-

tration. This is typically referred to as a 5�95% or a 10�90% pro�le. The lengthscale

used in the error function pro�le is equivalent to such a de�nition, but is inherently

related to the physical process, rather than an arbitrary speci�cation of the limits of

the di¤usion layer by an arbitrary set of percentages.

Also worthy of clari�cation is that the value of L does not correspond to the

complete span or width of the di¤usion layer like a 5�95% pro�le does, but it does
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Figure A.3 Centerline scalar trace �(x) for various values of L=�.

Figure A.4 Variation of B0, B2, and � for a range of L=�:
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represent the physically relevant lengthscale to the di¤usion process. For this reason,

the L=� values shown in �gure A.4 range from 0 < L=� � 1=8. Beyond L=� = 1=8,

the scalar trace at the centerline no longer exhibits the minimum and maximum values

of �1 and �2. However, it is worth noting that a value of L=� = 1=8 is not a physical

limit to the examination of this problem, but it does represent a limit to the simplicity

of the current investigation. A value L=� = 1=8 represents a bifurcation point, above

which the �ow may still contain a simple, single perturbation and exhibit a large

value of �; however, typically the timescale of the evolution of the perturbation is

much smaller than the timescale of the di¤usion process. This implies that � values

larger than � = 0:4 are more likely attributable to a complex, chaotic, or turbulent

�ow and not the fact that L=� > 1=8. This is evident in scalar traces that do contain

the minimum and maximum values at the limits of �1 of �2, yet has a molecular

mixing fraction of � > 0:4. This is typically seen in mixing layers where the �ow at

the centerline is turbulent, yet pockets of unmixed �uids are still engulfed into the

mixing layer and exist in their unmixed state at the centerline.

The relationship between B0, B2, and � and L=� is shown in �gure A.4. In simple

�ows with a single-mode perturbation, the measurement of � is relatively simple;

however, the measurement of L more di¢ cult due the lengthscale of the di¤usion

layer involved. In the limit of t! 0, the width of the di¤usion layer approaches zero,

which implies that the probe volume size required to fully resolve the di¤usion layer

must go to zero as well. Also, in strong strain �elds, L can be reduced to a value less

than that predicted by the di¤usivities of the scalars involved, requiring even smaller

probes. Thus, for accurate scalar mixing measurements during the initial stages of

mixing, an understanding of the required probe volume size is needed.

If the functional pro�le of the actual di¤usion layer is known to be an error

function pro�le, then the only parameter that determines the width of the di¤usion
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layer is the lengthscale, L. Suppose that the actual and the measured di¤usion pro�les

have the functional form

�i(x) = h�i+
��

2
erf

�
x

Li

�
; (A.2)

where i = a for the actual pro�le and i = m for the measured pro�le. This is the same

as equation (A.1), except that the lengthscales for the actual and measured pro�les

are uniquely identi�ed.

Given a scalar probe radius, r, the response of the probe to a given scalar �eld

�a is the convolution of the actual scalar �eld with the response function of the

measurement probe (Wilson 2002):

�m(x) =

Z 1

�1
�a(x� x0) R(x) dx0 ; (A.3)

where

R (x) =

8><>:
1
2r
ex=r if x < 0

1
2r
e�x=r if x � 0

(A.4)

is the response function of the probe, de�ned as such that the integral of R(x) over

the range �1 to 1 equals unity. Figure A.5 shows the response function of the

scalar probe and �gure A.6 shows the results of the spatial averaging performed by

the use of a probe with a �nite probe volume radius.

The value of L can be determined by measuring the slope of the di¤usion pro�le

at the in�ection point, or at x = 0. Taking the derivative of �a and �m at x = 0 and

rearranging gives

Li =

�p
�

2

@�i
@x

����
x=0

��1
; (A.5)

where i = a;m. Consequently, a relationship between the slopes of the di¤usion

pro�les at their in�ection points can be determined and the measured slope can be

corrected to obtain the actual di¤usion lengthscale. Such a relationship can be derived
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Figure A.5 Thermocouple probe volume response function for a probe radius r = 1.

Figure A.6 The resulting centerline scalar trace (dashed line) and actual scalar trace

(solid line).
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by integrating equation (A.3) to determine the measured pro�le.

Substituting equations (A.2) and (A.4) into equation (A.3) gives

�m(x) =

Z 0

�1

�
h�i+ ��

2
erf

�
x� x0
La

��
1

2r
ex

0=r dx0 (A.6)

+

Z 1

0

�
h�i+ ��

2
erf

�
x� x0
La

��
1

2r
e�x

0=r dx0 :

Since the response function integrates to a value of unity, the above expression sim-

pli�es to

�m(x) = h�i+ ��
4r

Z 0

�1
erf

�
x� x0
La

�
ex

0=r dx0 (A.7)

+
��

4r

Z 1

0

erf

�
x� x0
La

�
e�x

0=r dx0 :

The two integrals in equation (A.7) are computed asZ 0

�1
erf

�
x� x0
La

�
ex

0=r dx0 = e�
2
a ex=rr erf

�
x

La
+ �a

�
+ r erf

�
x

La

�
(A.8)Z 1

0

erf

�
x� x0
La

�
e�x

0=r dx0 = �e�2a e�x=rr erf
�
x

La
� �a

�
� r erf

�
x

La

�
;

where �a = La=2r. Substituting equation A.8 into equation A.7 and simplifying gives

�m(x) = �a(x) + A(x) ; (A.9)

where equation (A.9) is the resulting convolution of the actual scalar pro�le with the

scalar probe response function. The term A(x) is responsible for the spatial averaging

to the actual scalar trace and is de�ned

A(x) =
��

2
e�

2
a

�
sinh

�x
r

�
� e

x=r

2
erf

�
x

La
+ �a

�
� e

�x=r

2
erf

�
x

La
� �a

��
: (A.10)

With the convolution analytically evaluated, the relationship between the mea-

sured di¤usion lengthscale and the actual di¤usion lengthscale can be determined.
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Taking the inverse of equation (A.5) and subtracting the actual lengthscale from the

measured lengthscale gives

1

Lm
� 1

La
=

p
�

2

�
@�m
@x

� @�a
@x

�����
x=0

: (A.11)

From equation (A.9),

�m(x)� �a(x) = A(x) : (A.12)

Substituting equation (A.12) into equation (A.11) yields

1

Lm
� 1

La
=

p
�

2

@A

@x

����
x=0

: (A.13)

Evaluating @A=@x at x = 0 gives

@A

@x

����
x=0

=
��

2r
e�

2
a erfc (�a)�

��

La
p
�
; (A.14)

where erfc(x) = 1 � erf (x) is the complementary error function. Thus, equation

(A.13) becomes

Lm =

�
��
p
�

4r
e�

2
a erfc(�a)�

��

2La
+
1

La

��1
: (A.15)

Figure A.7 Correction curves for Lm with r as a parameter.



105

Equation (A.15) is the fundamental equation necessary for correcting the mea-

sured lengthscale, Lm, to the value of the actual lengthscale, La. The relationship

La = f(Lm) is not readily discernible, so the graphical relationship between La and

Lm is shown in �gure A.7. It can be seen in �gure A.7 that when r � La, then

La = Lm. This is expected, as the scalar probe is fully capable of resolving all spa-

tial gradients. However, as r approaches the value of La, the functional relationship

La = Lm breaks down and Lm becomes greater than La. In this case, the need for

correcting the spatially-averaged value of Lm becomes necessary when the probe ra-

dius is of the same order of magnitude or greater than the di¤usion lengthscale in

question and is determined by equation (A.15).
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APPENDIX B

THERMOCOUPLE NOISE REDUCTION

Temperature measurements in the water channel were made with small diameter

(0:08mm) 40 gauge wire thermocouples. The use of such small wires in an electrically-

conducting medium ampli�es the ambient electromagnetic interference (EMI) and

radio-frequency interference (RFI) voltages that are sampled by the data acquisition

(DAQ) system. This noise introduces �uctuating voltages, due to aliasing e¤ects,

within the spectral range of interest for this investigation. Thus, the use of high-

and low-pass �ltering techniques is not available for eliminating this noise when post-

processing the data, and the noise must be mitigated at its source. Two steps were

taken to control extraneous voltage readings by the thermocouple/DAQ system.

First, it was determined that the electrical interaction between two thermocou-

ples in the water channel produced a �cross-talk�e¤ect, resulting in voltage �uctu-

ations being measured on each of the thermocouples being used. The original ther-

mocouple con�guration used in the water channel used two thermocouples and two

DAQ systems. The �rst thermocouple was connected to an 8-bit DAQ system with

100 Hz sampling rate. The second thermocouple was connected to the same 16-bit

DAQ system as described in §2.2. The two thermocouples were mounted on the same

vertical rake and were positioned very close to one another. The �rst thermocouple

was used for the detection of the centerplane of the mixing layer by measuring f1 as

described by equation (2.6). Once the two thermocouples were located on the center-

plane, the second thermocouple, which was connected to the new DAQ system, was

used to take high-resolution temperature measurements at 100 kHz.

The spurious voltage �uctuations were eliminated by changing the con�guration

and eliminating the use of one thermocouple and the original DAQ system. In the new
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system, only one thermocouple was used to measure both the centerplane placement

of the probe volume and the full resolution temperature measurements. However, the

current DAQ software did not allow for the creation of data manipulation or averaging

calculations. A program was written so that the following operating procedure could

be used.

� First, the thermocouple would be placed at the approximate vertical location

of the centerplane.

� Temperature measurements would be sampled at 200 Hz for approximately 50

seconds. Once the sampling was complete, the data would be written to disk

under the �lename �c:ncenter.dat�.

� The program would be invoked to calculate f1 using a 10-point window averag-

ing routine to minimize spurious noise. If f1 = 0:5 � 0:25, then the next steps

would be completed, otherwise, the thermocouple was repositioned accordingly

and the previous step was repeated.

� Finally, once the thermocouple had been successfully located on the centerplane,

temperature measurements would be recorded at 50 kHz.

In addition to eliminating all cross-talk voltage �uctuations, it was desired to

eliminate all EMI- and RFI-induced voltage �uctuations. To accomplish this, the

40-gauge thermocouple wire was limited to 3 feet in length. The remainder of the

wire connecting the DAQ system to the 40-gauge wire was replaced with 18-gauge,

twisted and shielded E-type thermocouple extension wire. This minimizes the length

over which the 40-gauge wire can act as an antenna for RFI and EMI noise. In

addition, the 40-gauge wire was shielded with a thin layer of tin foil terminating

approximately 2 cm before the probe volume. The shielding on both the 40-gauge
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and 18-gauge wires were grounded, e¤ectively removing most of the RFI and EMI

noise from the thermocouple system.
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APPENDIX C

ENTRANCE PLENUM ENHANCEMENTS

The combination of wire meshes placed within the entrance plenum of the wa-

ter channel serve the purpose of eliminating free-stream turbulence �uctuations and

minimizing the momentum de�cit along the walls and splitter plate. Originally, the

stainless steel meshes were caulked to 1=2"�1=2" plastic �egg-crate�grills for support,

as shown in �gure C.1. The �rst enhancement made to the screen mesh/egg-crate

combination was to attach the screens by melting the steel screen into the plastic

egg-crate. In this manner, only the area on the screen mesh covered by the plastic

egg-crate �lled the holes in the screen mesh, whereas the caulking process occupied

more screen mesh area than was necessary. The second enhancement was to remove

the plastic ribs from the egg-crates that were closest to the splitter plate. It was

found from dye visualization experiments that the ribs adjacent to the splitter plate

created a recirculation region which tripped the formation of a turbulent boundary

layer just downstream of the screen mesh. By removing this rib, the boundary layers

formed just downstream of the screen meshes were found to be smaller and laminar,

as shown in �gure C.2.
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Figure C.1 Schematic of the entrance plenum showing egg-crate grill and splitter plate.

The screen meshes are not shown.

Figure C.2 Schematic of boundary layer growth before (left) and after (right) the re-

moval of the plastic ribs adjacent to the splitter plate.
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